[0802.3210] Relativistic Radiation Magnetohydrodynamics in Dynamical Spacetimes: Numerical Methods and Tests

Authors: Brian D. Farris, Tsz Ka Li, Yuk Tung Liu, Stuart L. Shapiro (UIUC)

Date: 21 Feb 2008

Abstract: Many systems of current interest in relativistic astrophysics require a knowledge of radiative transfer in a magnetized gas flowing in a strongly-curved, dynamical spacetime. Such systems include coalescing compact binaries containing neutron stars or white dwarfs, disks around merging black holes, core collapse supernovae, collapsars, and gamma-ray burst sources. To model these phenomena, all of which involve general relativity, radiation (photon and/or neutrino), and magnetohydrodynamics, we have developed a general relativistic code capable of evolving MHD fluids and radiation in dynamical spacetimes. Our code solves the coupled Einstein-Maxwell-MHD-Radiation system of equations both in axisymmetry and in full 3+1 dimensions. We evolve the metric by integrating the BSSN equations, and use a conservative, high-resolution shock-capturing scheme to evolve both the MHD and radiation moment equations. In this paper, we implement our scheme for optically thick gases and grey-body opacities. Our code gives accurate results in a suite of tests involving radiating shocks and nonlinear waves propagating in Minkowski spacetime. In addition, to test our code's ability to evolve the relativistic radiation-MHD equations in strong-field dynamical spacetimes, we study "thermal Oppenheimer-Snyder collapse" to a black hole, and find good agreement between analytic and numerical solutions.

abs pdf

Mar 04, 2008

0802.3210 (/preprints)
2008-03-04, 12:31 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis