[0901.3511] Proper Star Direction and Physical Reference Frames linked via General Relativistic definition of Astrometric Measurement I. Stellar Aberration

Authors: Mariateresa Crosta (1), Alberto Vecchiato (1) ((1) INAF - Astronomical Observatory of Torino)

Date: 22 Jan 2009

Abstract: The high accuracy of modern space astrometry requires the use of General Relativity to model the propagation of stellar light through the gravitational field encountered from a source to a given observer inside the Solar System. In this sense relativistic astrometry is part of fundamental physics. The general relativistic definition of astrometric measurement needs an appropriate use of the concept of reference frame, which should then be linked to the conventions of the IAU Resolutions (2000), which fix the celestial coordinate system. A consistent definition of the astrometric observables in the context of General Relativity is also essential to find uniquely the stellar coordinates and proper motion, this being the main physical task of the inverse ray tracing problem. Aim of this work is to set the level of reciprocal consistency of two relativistic models, GREM and RAMOD (Gaia, ESA mission), in order to garantee a physically correct definition of light direction to a star, an essential item for deducing the star coordinates and proper motion within the same level of measurement accuracy.

abs pdf

Jan 26, 2009

0901.3511 (/preprints)
2009-01-26, 08:36 [edit]


  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis