[0902.0790] Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-spinning, equal-mass black holes

Authors: Alessandra Buonanno, Yi Pan, Harald P. Pfeiffer, Mark A. Scheel, Luisa T. Buchman, Lawrence E. Kidder

Date: 4 Feb 2009

Abstract: We calibrate the effective-one-body (EOB) model to an accurate numerical simulation of an equal-mass, non-spinning binary black-hole coalescence produced by the Caltech-Cornell collaboration. Aligning the EOB and numerical waveforms at low frequency over a time interval of ~1000M, and taking into account the uncertainties in the numerical simulation, we investigate the significance and degeneracy of the EOB adjustable parameters during inspiral, plunge and merger, and determine the minimum number of EOB adjustable parameters that achieves phase and amplitude agreements on the order of the numerical error. We find that phase and fractional amplitude differences between the numerical and EOB values of the dominant gravitational wave mode h_{22} can be reduced to 0.02 radians and 2%, respectively, until a time 26 M before merger, and to 0.1 radians and 10%, at a time 16M after merger (during ringdown), respectively. Using LIGO, Enhanced LIGO and Advanced LIGO noise curves, we find that the overlap between the EOB and the numerical h_{22}, maximized only over the initial phase and time of arrival, is larger than 0.999 for equal-mass binary black holes with total mass 30-150 Msun. In addition to the leading gravitational mode (2,2), we compare the dominant subleading modes (4,4) and (3,2) and find phase and amplitude differences on the order of the numerical error. We also determine the mass-ratio dependence of one of the EOB adjustable parameters by fitting to numerical {\it inspiral} waveforms for black-hole binaries with mass ratios 2:1 and 3:1. These results improve and extend recent successful attempts aimed at providing gravitational-wave data analysts the best analytical EOB model capable of interpolating accurate numerical simulations.

abs pdf

Feb 06, 2009

0902.0790 (/preprints)
2009-02-06, 09:13 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis