[0908.1654] A Relativistic Motion Integrator: Numerical accuracy and illustration with BepiColombo and Mars-NEXT

Authors: A. Hees, S. Pireaux

Date: 12 Aug 2009

Abstract: Today, the motion of spacecraft is still described by the classical Newtonian equations of motion plus some relativistic corrections. This approach might become cumbersome due to the increasing precision required. We use the Relativistic Motion Integrator (RMI) approach to numerically integrate the native relativistic equations of motion for a spacecraft. The principle of RMI is presented. We compare the results obtained with the RMI method with those from the usual Newton plus correction approach for the orbit of the BepiColombo (around Mercury) and Mars-NEXT (around Mars) orbiters. Finally, we present a numerical study of RMI and we show that the RMI approach is relevant to study the orbit of spacecraft.

abs pdf

Aug 13, 2009

0908.1654 (/preprints)
2009-08-13, 09:25 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis