[0912.1615] 3-pt Statistics of Cosmological Stochastic Gravitational Waves

Authors: Peter Adshead, Eugene A. Lim

Date: 8 Dec 2009

Abstract: We consider the 3-pt function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the 3-pt signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The 3-pt signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how non-linear the process is, the 3-pt correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the CMB is sourced by gravitational waves generated by a global phase transition, a strong 3-pt signal among the polarization modes could also be produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.

abs pdf

Dec 23, 2009

0912.1615 (/preprints)
2009-12-23, 11:30 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis