[1004.0284] Constraining the mass of the graviton using coalescing black-hole binaries

Authors: Drew Keppel, P. Ajith

Date: 2 Apr 2010

Abstract: We study how well the mass of the graviton can be constrained from gravitational-wave (GW) observations of coalescing binary black holes. Whereas the previous investigations employed post-Newtonian (PN) templates describing only the inspiral part of the signal, the recent progress in analytical and numerical relativity has provided analytical waveform templates coherently describing the inspiral-merger-ringdown (IMR) signals. We show that a search for binary black holes employing IMR templates will be able to constrain the mass of the graviton much more accurately (about an order of magnitude) than a search employing PN templates. The best expected bound from GW observatories (lambda_g > 7.8 x 10ˆ13 km from Adv. LIGO, lambda_g > 7.1 x 10ˆ14 km from Einstein Telescope, and lambda_g > 5.9 x 10ˆ17 km from LISA) are several orders-of-magnitude better than the best available model-independent bound (lambda_g > 2.8 x 10ˆ12 km, from Solar system tests). Most importantly, GW observations will provide the first constraints from the highly dynamical, strong-field regime of gravity.

abs pdf

Apr 05, 2010

1004.0284 (/preprints)
2010-04-05, 11:14 [edit]


  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis