[1009.1870] Relativistic encounters of more than two black holes

Authors: Pau Amaro-Seoane, Marc Dewi Freitag

Date: 9 Sep 2010

Abstract: Two coalescing black holes (BHs) represent a conspicuous source of gravitational waves (GWs). The merger involves 17 parameters in the general case of Kerr BHs, so that a successful identification and parameter extraction of the information encoded in the waves will provide us with a detailed description of the physics of BHs. A search based on matched-filtering for characterization and parameter extraction requires the development of some $10ˆ{15}$ waveforms. If a third additional BH perturbed the system, the waveforms would not be applicable, and we would need to increase the number of templates required for a valid detection. In this letter, we calculate the probability that more than two BHs interact in the regime of strong relativity in a dense stellar cluster. We determine the physical properties necessary in a stellar system for three black holes to have a close encounter in this regime and also for an existing binary of two BHs to have a strong interaction with a third hole. In both cases the event rate is negligible. While dense stellar systems such as galactic nuclei, globular clusters and nuclear stellar clusters are the breeding grounds for the sources of gravitational waves that ground-based and space-borne detectors like Advanced LIGO and LISA will be exploring, the analysis of the waveforms in full general relativity needs only to evaluate the two-body problem. This reduces the number of templates of waveforms to create by orders of magnitude.

abs pdf

Sep 13, 2010

1009.1870 (/preprints)
2010-09-13, 08:12 [edit]


  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis