**Authors**: Massimo Tinto, Márcio Eduardo da Silva Alves

**Date**: 6 Oct 2010

**Abstract**: The direct observation of gravitational waves will provide a unique tool for probing the dynamical properties of highly compact astrophysical objects, mapping ultra-relativistic regions of space-time, and testing Einstein's general theory of relativity. LISA (Laser Interferometer Space Antenna), a joint NASA-ESA mission to be launched in the next decade, will perform these scientific tasks by detecting and studying low-frequency cosmic gravitational waves through their influence on the phases of six modulated laser beams exchanged between three remote spacecraft. By directly measuring the polarization components of the waves LISA will detect, we will be able to test Einstein's theory of relativity with good sensitivity. Since a gravitational wave signal predicted by the most general relativistic metric theory of gravity accounts for {\it six} polarization modes (the usual two Einstein's tensor polarizations as well as two vector and two scalar wave components), we have derived the LISA Time-Delay Interferometric responses and estimated their sensitivities to vector- and scalar-type waves. We find that (i) at frequencies larger than roughly the inverse of the one-way light time ($\approx 6 \times 10ˆ{-2} $ Hz.) LISA is more than ten times sensitive to scalar-longitudinal and vector signals than to tensor and scalar-transverse waves, and (ii) in the low part of its frequency band is equally sensitive to tensor and vector waves and somewhat less sensitive to scalar signals.

1010.1302
(/preprints)

2010-12-01, 13:38
**[edit]**

© M. Vallisneri 2012 — last modified on 2010/01/29

*Tantum in modicis, quantum in maximis*