[1102.0262] Physics of Coevolution of Galaxies and Supermassive Black Holes

Authors: Renyue Cen (Princeton University Observatory)

Date: 1 Feb 2011

Abstract: A model for coevolution of galaxies and supermassive black holes (SMBH) is presented that is physically based. The starting point is a gas-rich major merger that triggers a starburst and the endpoint is a quiescent elliptical galaxy many gigayears later. There is an approximate coevolution between starburst galaxies and elliptical galaxies, although it is not exact in several important ways. Starburst precedes the onset of main SMBH growth with a gap of time equal to ~100Myr and is responsible for shutting down its own activities; AGN has little to do with it. While starburst occurs earlier and lasts for only about 100Myrs, the AGN accretion occurs later and lasts for ~1 Gyr or longer with a diminishing Eddington ratio. The main AGN growth in post-starburst phase is fueled by recycled gas from inner bulge stars and self-regulated. The predicted relation between SMBH mass and bulge mass/velocity dispersion is consistent with observations. A suite of testable and falsifiable predictions and implications with respect to relationships between various types of galaxies and AGN are made. Where comparisons to extant observations are possible, the model is in agreement with them.

abs pdf

Feb 03, 2011

1102.0262 (/preprints)
2011-02-03, 12:33 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis