[1103.0287] Self force on a scalar charge in Kerr spacetime: eccentric equatorial orbits

Authors: Niels Warburton, Leor Barack

Date: 1 Mar 2011

Abstract: We present a numerical code for calculating the self force on a scalar charge moving in a bound (eccentric) geodesic in the equatorial plane of a Kerr black hole. We work in the frequency domain and make use of the method of extended homogeneous solutions [Phys.\ Rev.\ D {\bf 78}, 084021 (2008)], in conjunction with mode-sum regularization. Our work is part of a program to develop a computational architecture for fast and efficient self-force calculations, alternative to time-domain methods. We find that our frequency-domain method outperforms existing time-domain schemes for small eccentricities, and, remarkably, remains competitive up to eccentricities as high as $\sim 0.7$. As an application of our code we (i) compute the conservative scalar-field self-force correction to the innermost stable circular equatorial orbit, as a function of the Kerr spin parameter; and (ii) calculate the variation in the rest mass of the scalar particle along the orbit, caused by the component of the self force tangent to the four-velocity.

abs pdf

Mar 02, 2011

1103.0287 (/preprints)
2011-03-02, 23:59 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis