[1104.2938] An improved, "phase-relaxed" F-statistic for gravitational-wave data analysis

Authors: Curt Cutler

Date: 14 Apr 2011

Abstract: Rapidly rotating, slightly non-axisymmetric neutron stars emit nearly periodic gravitational waves (GWs), quite possibly at levels detectable by ground-based GW interferometers. We refer to these sources as "GW pulsars". For any given sky position and frequency evolution, the F-statistic is the optimal (frequentist) statistic for the detection of GW pulsars. However, in "all-sky" searches for previously unknown GW pulsars, it would be computationally intractable to calculate the (fully coherent) F-statistic at every point of a (suitably fine) grid covering the parameter space: the number of gridpoints is many orders of magnitude too large for that. Here we introduce a "phase-relaxed" F-statistic, which we denote F_pr, for incoherently combining the results of fully coherent searches over short time intervals. We estimate (very roughly) that for realistic searches, our F_pr is ~10-15% more sensitive than the "semi-coherent" F-statistic that is currently used. Moreover, as a byproduct of computing F_pr, one obtains a rough determination of the time-evolving phase offset between one's template and the true signal imbedded in the detector noise. Almost all the ingredients that go into calculating F_pr are already implemented in LAL, so we expect that relatively little additional effort would be required to develop a search code that uses F_pr.

abs pdf

Apr 18, 2011

1104.2938 (/preprints)
2011-04-18, 14:10 [edit]


  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis