[1108.3186] Summed Parallel Infinite Impulse Response (SPIIR) Filters For Low-Latency Gravitational Wave Detection

Authors: Shaun Hooper (UWA), Shin Kee Chung (UWA), Jing Luan (Caltech), David Blair (UWA), Yanbei Chen (Caltech), Linqing Wen (UWA)

Date: 16 Aug 2011

Abstract: With the upgrade of current gravitational wave detectors, the first detection of gravitational wave signals is expected to occur in the next decade. Low-latency gravitational wave triggers will be necessary to make fast follow-up electromagnetic observations of events related to their source, e.g., prompt optical emission associated with short gamma-ray bursts. In this paper we present a new time-domain low-latency algorithm for identifying the presence of gravitational waves produced by compact binary coalescence events in noisy detector data. Our method calculates the signal to noise ratio from the summation of a bank of parallel infinite impulse response (IIR) filters. We show that our summed parallel infinite impulse response (SPIIR) method can retrieve the signal to noise ratio to greater than 99% of that produced from the optimal matched filter. We emphasise the benefits of the SPIIR method for advanced detectors, which will require larger template banks.

abs pdf

Aug 16, 2011

1108.3186 (/preprints)
2011-08-16, 21:02 [edit]


  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis