[1111.4516] The Critical Coupling Likelihood Method: A new approach for seamless integration of environmental and operating conditions of gravitational wave detectors into gravitational wave searches

Authors: Cesar A. Costa, Cristina V. Torres

Date: 18 Nov 2011

Abstract: As part of the current LIGO search for gravitational waves (GWs) we find ourselves trying to determine if and when noise is coupling into the instrument. The Critical Coupling Likelihood (CCL) method has been developed to directly fold information about the potential influence of instrument noise sources into GW search efforts. By using the CCL functions of uncoupled (background) and coupled (foreground) instrumental noise sources, CCL should be able to identify undesirable coupled instrumental noise from potential GW candidates. Our preliminary results show that CCL can associate up to ~80% of observed artifacts with SNR>=8, to local noise sources. That reduces the duty cycle of the instrument by less than 15%. An approach like CCL will become increasingly important as we move into the Advanced LIGO era, going from a first GW detection to gravitational wave astronomy.

abs pdf

Nov 22, 2011

1111.4516 (/preprints)
2011-11-22, 15:12 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis