[1111.5609] Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems

Authors: Alexandre Le Tiec, Enrico Barausse, Alessandra Buonanno

Date: 23 Nov 2011

Abstract: Using the first law of binary black-hole mechanics, we compute the binding energy E and total angular momentum J of two non-spinning compact objects moving on circular orbits with frequency Omega, at leading order beyond the test-particle approximation. By minimizing E(Omega) we recover the exact frequency shift of the Schwarzschild innermost stable circular orbit induced by the conservative piece of the gravitational self-force. Comparing our results for the coordinate invariant relation E(J) to those recently obtained from numerical simulations of comparable-mass non-spinning black-hole binaries, we find a remarkably good agreement, even in the strong-field regime. Our findings confirm that the domain of validity of perturbative calculations may extend well beyond the extreme mass-ratio limit.

abs pdf

Nov 23, 2011

1111.5609 (/preprints)
2011-11-23, 23:41 [edit]


  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis