[1112.1898] Accessibility of the Gravitational-Wave Background due to Binary Coalescences to Second and Third Generation Gravitational-Wave Detectors

Authors: Chengjian Wu, Vuk Mandic, Tania Regimbau

Date: 8 Dec 2011

Abstract: Compact binary coalescences, such as binary neutron stars or black holes, are among the most promising candidate sources for the current and future terrestrial gravitational-wave detectors. While such sources are best searched using matched template techniques and chirp template banks, integrating chirp signals from binaries over the entire Universe also leads to a gravitational-wave background (GWB). In this paper we systematically scan the parameter space for the binary coalescence GWB models, taking into account uncertainties in the star formation rate and in the delay time between the formation and coalescence of the binary, and we compare the computed GWB to the sensitivities of the second and third generation gravitational-wave detector networks. We find that second generation detectors are likely to detect the binary coalescence GWB, while the third generation detectors will probe most of the available parameter space. The binary coalescence GWB will, in fact, be a foreground for the third-generation detectors, potentially masking the GWB background due to cosmological sources. Accessing the cosmological GWB with third generation detectors will therefore require identification and subtraction of all inspiral signals from all binaries in the detectors' frequency band.

abs pdf

Dec 20, 2011

1112.1898 (/preprints)
2011-12-20, 09:13 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis