[1204.4340] Light scalar field constraints from gravitational-wave observations of compact binaries

Authors: Emanuele Berti, Leonardo Gualtieri, Michael Horbatsch, Justin Alsing

Date: 19 Apr 2012

Abstract: Scalar-tensor theories are among the simplest extensions of general relativity. In theories with light scalars, deviations from Einstein's theory of gravity are determined by the scalar mass m_s and by a Brans-Dicke-like coupling parameter \omega_{BD}. We show that gravitational-wave observations of nonspinning neutron star-black hole binary inspirals can be used to set upper bounds on the combination m_s/\sqrt{\omega_{BD}}. We estimate via a Fisher matrix analysis that individual observations with signal-to-noise ratio \rho would yield (m_s/\sqrt{\omega_{\rm BD}})(\rho/10)\lesssim 10ˆ{-15}, 10ˆ{-16} and 10ˆ{-19} eV for Advanced LIGO, ET and eLISA, respectively. A statistical combination of multiple observations may further improve this bound.

abs pdf

May 18, 2012

1204.4340 (/preprints)
2012-05-18, 18:17 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis