[1208.5237] The tetralogy of Birkhoff theorems

Authors: Hans-Jürgen Schmidt

Date: 26 Aug 2012

Abstract: We classify the existent Birkhoff-type theorems into four classes: First, in field theory, the theorem states the absence of helicity 0- and spin 0-parts of the gravitational field. Second, in relativistic astrophysics, it is the statement that the gravitational far-field of a spherically symmetric star carries, apart from its mass, no information about the star; therefore, a radially oscillating star has a static gravitational far-field. Third, in mathematical physics, Birkhoff's theorem reads: up to singular exceptions of measure zero, the spherically symmetric solutions of Einstein's vacuum field equation with Lambda = 0 can be expressed by the Schwarzschild metric; for Lambda unequal 0, it is the Schwarzschild-de Sitter metric instead. Fourth, in differential geometry, any statement of the type: every member of a family of pseudo-Riemannian space-times has more isometries than expected from the original metric ansatz, carries the name Birkhoff-type theorem. Within the fourth of these classes we present some new results with further values of dimension and signature of the related spaces; including them are some counterexamples: families of space-times where no Birkhoff-type theorem is valid. These counterexamples further confirm the conjecture, that the Birkhoff-type theorems have their origin in the property, that the two eigenvalues of the Ricci tensor of two-dimensional pseudo-Riemannian spaces always coincide, a property not having an analogy in higher dimensions. Hence, Birkhoff-type theorems exist only for those physical situations which are reducible to two dimensions.

abs pdf

Sep 17, 2012

1208.5237 (/preprints)
2012-09-17, 13:44 [edit]


  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis