[1209.0667] Gravitational Waves: Sources, Detectors and Searches

Authors: Keith Riles

Date: 4 Sep 2012

Abstract: Gravitational wave science should transform in this decade from a study of what has not been seen to a full-fledged field of astronomy in which detected signals reveal the nature of cataclysmic events and exotic objects. The LIGO Scientific Collaboration and Virgo Collaboration have recently completed joint data runs of unprecedented sensitivities to gravitational waves. So far, no gravitational radiation has been seen (although data mining continues). It seems likely that the first detection will come from 2nd-generation LIGO and Virgo interferometers now being installed. These new detectors are expected to detect ~40 coalescences of neutron star binary systems per year at full sensitivity. At the same time, research and development continues on 3rd-generation underground interferometers and on space-based interferometers. In parallel there is a vigorous effort in the radio pulsar community to detect ~several-nHz gravitational waves via the timing residuals from an array of pulsars at different locations in the sky. As the dawn of gravitational wave astronomy nears, this review, intended primarily for interested particle and nuclear physicists, describes what we have learned to date and the prospects for direct discovery of gravitational waves.

abs pdf

Sep 15, 2012

1209.0667 (/preprints)
2012-09-15, 23:32 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis