[1210.1214] The runaway instability in general-relativistic accretion disks

Authors: O. Korobkin (1), E. Abdikamalov (2), N. Stergioulas (3), E. Schnetter (4), B. Zink (5), S. Rosswog (1), C. Ott (2) ((1) Stockholm University, (2) Caltech, (3) Thessaloniki, (4) Perimeter Institute, (5) University of Tübingen)

Date: 3 Oct 2012

Abstract: When an accretion disk falls prey to the runaway instability, a large portion of its mass is devoured by the black hole within a few dynamical times. Despite decades of effort, it is still unclear under what conditions such an instability can occur. The technically most advanced relativistic simulations to date were unable to find a clear sign for the onset of the instability. In this work, we present three-dimensional relativistic hydrodynamics simulations of accretion disks around black holes in dynamical spacetime. We focus on the configurations that are expected to be particularly prone to the development of this instability. We demonstrate, for the first time, that the fully self-consistent general relativistic evolution does indeed produce a runaway instability.

abs pdf

Oct 04, 2012

1210.1214 (/preprints)
2012-10-04, 18:36 [edit]

  Login:   Password:   [rss] [cc] [w3] [css]

© M. Vallisneri 2012 — last modified on 2010/01/29

Tantum in modicis, quantum in maximis