Michele's publications

ORCID 0000-0002-4162-0033arXiv – ADSLynda


Theses [+]


Latest submitted articles [-]

(*: articles with authors listed alphabetically)

  1. The NANOGrav 15-year data set: Search for Transverse Polarization Modes in the Gravitational-Wave Background
    G. Agazie et al.*
    arXiv/2310.12138 (2023) [+]
  2. The NANOGrav 12.5-year data set: Multi-messenger targeted search for gravitational waves from an eccentric supermassive binary in 3C 66B
    G. Agazie et al.*
    arXiv/2309.17438 (2023) [+]
  3. Comparing recent PTA results on the nanohertz stochastic gravitational wave background
    International Pulsar Timing Array
    arXiv/2309.00693 (2023) [+]
  4. The NANOGrav 15-year Gravitational-Wave Background Analysis Pipeline
    A. D. Johnson et al.*
    arXiv/2306.16223 (2023) [+]
  5. The NANOGrav 12.5-year Data Set: Search for Gravitational Wave Memory
    G. Agazie et al.*
    arXiv/2307.13797 (2023) [+]

Clicking on [+] will display hyperlinks and further information


Articles in refereed journals [-]

(*: articles with authors listed alphabetically)

  1. How to Detect an Astrophysical Nanohertz Gravitational-Wave Background
    B. Bécsy et al.*
    Astrophys. J. 959, 9 (2023) [+]
  2. Posterior predictive checking for gravitational-wave detection with pulsar timing arrays: I. The optimal statistic
    M. Vallisneri, P. M. Meyers, K. Chatziioannou, A. J. K. Chua
    Phys. Rev. D 108, 123007 (2023) [+]
  3. Posterior predictive checking for gravitational-wave detection with pulsar timing arrays: II. Posterior predictive distributions and pseudo-Bayes factors
    P. M. Meyers, K. Chatziioannou, M. Vallisneri, A. J. K. Chua
    Phys. Rev. D 108, 123008 (2023) [+]
  4. The NANOGrav 15-year Data Set: Search for Anisotropy in the Gravitational-Wave Background
    Agazie et al.*
    Astrophys. J. Lett. 956, L3 (2023) [+]
  5. The NANOGrav 15-year Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational Wave Background
    Agazie et al.*
    Astrophys. J. Lett. 952, L37 (2023) [+]
  6. The NANOGrav 15-year Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
    Agazie et al.*
    Astrophys. J. Lett. 951, L50 (2023) [+]
  7. The NANOGrav 12.5-year Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
    Z. Arzoumanian et al.*
    Astrophys. J. Lett. 951, L28 (2023) [+]
  8. The NANOGrav 15-year Data Set: Search for Signals from New Physics
    Afzal et al.*
    Astrophys. J. Lett. 951, L11 (2023) [+]
  9. The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background
    Agazie et al.*
    Astrophys. J. Lett. 951, L8 (2023) [+]
  10. The NANOGrav 15-year Data Set: Observations and Timing of 68 Millisecond Pulsars
    Agazie et al.*
    Astrophys. J. Lett. 951, L9 (2023) [+]
  11. The NANOGrav 15-Year Data Set: Detector Characterization and Noise Budget
    Agazie et al.*
    Astrophys. J. Lett. 951, L10 (2023) [+]
  12. Accurate characterization of the stochastic gravitational-wave background with pulsar timing arrays by likelihood reweighting
    S. Hourihane, P. M. Meyers, A. Johnson, K. Chatziioannou, and M. Vallisneri
    Phys. Rev. D 107, 084045 (2023) [+]
  13. Assessing the data-analysis impact of LISA orbit approximations using a GPU-accelerated response model
    M. L. Katz, J.-B. Bayle, A. J. K. Chua, and M. Vallisneri
    Phys. Rev. D 106, 103001 (2022) [+]
  14. The Unanticipated Phenomenology of the Blazar PKS 2131–021: A Unique Supermassive Black Hole Binary Candidate
    S. O'Neill et al.
    Astrophys. J. Lett. 926, L35 (2022) [+]
  15. The NANOGrav 12.5-year data set: Search for Non-Einsteinian Polarization Modes in the Gravitational-Wave Background
    Z. Arzoumanian et al.*
    Astrophys. J. Lett. 923, 22 (2021) [+]
  16. Searching For Gravitational Waves From Cosmological Phase Transitions With The NANOGrav 12.5-year dataset
    Z. Arzoumanian et al.*
    Phys. Rev. Lett. 127, 251302 (2021) [+]
  17. The NANOGrav 11yr Data Set: Limits on Supermassive Black Hole Binaries in Galaxies within 500 Mpc
    Z. Arzoumanian et al.*
    Astrophys. J. 914, 121 (2021) [+]
  18. Astrophysics Milestones For Pulsar Timing Array Gravitational Wave Detection
    Nihan S. Pol et al.
    Astrophys. J. Lett. 911, L34 (2021) [+]
  19. Time-delay interferometry without delays
    M. Vallisneri, J.-B. Bayle, S. Babak and A. Petiteau
    Phys. Rev. D 103, 082001 (2021) [+]
  20. The NANOGrav 12.5-year Data Set: Search For An Isotropic Stochastic Gravitational-Wave Background
    Z. Arzoumanian et al.*
    Astrophys. J. Lett. 905, L34 (2020) [+]
  21. GipsyX/RTGx, a new tool set for space geodetic operations and research
    W. Bertiger, Y. Bar-Sever, A. Dorsey, B. Haines, N. Harvey, D. Hemberger, M. Heflin, W. Lu, M. Miller, A. W. Moore, D. Murphy, P. Ries, L. Romans, A. Sibois, A. Sibthorpe, B. Szilagyi, M. Vallisneri, and P. Willis
    Adv. Space Res. 66, 469 (2020) [+]
  22. Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set
    Z. Arzoumanian et al.*
    Astrophys. J. 900, 102 (2020) [+]
  23. The NANOGrav 12.5-year Data Set: Wideband Timing of 47 Millisecond Pulsars
    Md F. Alam et al.*
    Astrophys. J. Supp. Series 252, 5 (2020) [+]
  24. The NANOGrav 12.5-year Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars
    Md F. Alam et al.*
    Astrophys. J. Supp. Series 252, 4 (2020) [+]
  25. Modeling the uncertainties of solar-system ephemerides for robust gravitational-wave searches with pulsar timing arrays
    M. Vallisneri et al.
    Astrophys. J. 893, 112 (2020) [+]
  26. The NANOGrav 11-Year Data Set: Evolution of Gravitational Wave Background Statistics
    J. S. Hazboun et al.
    Astrophys. J. 890, 108 (2020) [+]
  27. The NANOGrav 11-Year Data Set: Limits on Gravitational Wave Memory
    K. Aggarwal et al.*
    Astrophys. J. 889, 38 (2020) [+]
  28. Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference
    A. J. K. Chua and M. Vallisneri
    Phys. Rev. Lett. 124, 041102 (2020) [+]
  29. Bayesian cross validation for gravitational-wave searches in pulsar-timing array data
    H. Wang, S. R. Taylor, and M. Vallisneri
    MNRAS 487, 3644 (2019) [+]
  30. The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
    K. Aggarwal et al.*
    Astrophys. J. 880, 116 (2019) [+]
  31. ROMAN: Reduced-Order Modeling with Artificial Neurons
    A. J. K. Chua, C. R. Galley, and M. Vallisneri
    Phys. Rev. Lett. 122, 211101 (2019) [+]
  32. A Gaussian Mixture Model for Nulling Pulsars
    D. L. Kaplan, J. K. Swiggum, T. D. J. Fichtenbauer, and M. Vallisneri
    Astrophys. J. 855, 14 (2018) [+]
  33. The NANOGrav Eleven-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background
    Z. Arzoumanian et al.*
    ApJ 859, 47 (2018) [+]
  34. The NANOGrav Eleven-year Data Set: High-precision timing of 45 Millisecond Pulsars
    Z. Arzoumanian et al.*
    ApJ 235, 37 (2018) [+]
  35. Taming outliers in pulsar-timing datasets with hierarchical likelihoods and Hamiltonian sampling
    M. Vallisneri and R. van Haasteren
    MNRAS 466, 4954 (2017) [+]
  36. The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools
    M. Holst, O. Sarbach, M. Tiglio, and M. Vallisneri*
    Bulletin of the American Mathematical Society 53, 513 (2016) [+]
  37. The NANOGrav nine-year data set: limits on the isotropic stochastic gravitational wave background
    Z. Arzoumanian et al.*
    Astrophys. J. 821, 13 (2016) [+]
  38. Are we there yet? Time to detection of nanohertz gravitational waves based on pulsar-timing array limits
    S. R. Taylor, M. Vallisneri, J. A. Ellis, C. M. F. Mingarelli, T. J. W. Lazio, and R. van Haasteren
    Astrophys. J. Lett. 819, 6 (2016) [+]
  39. The NANOGrav nine-year data set: observations, arrival time measurements, and analysis of 37 millisecond pulsars
    Z. Arzoumanian et al.*
    Astrophys. J. 813, 65 (2015) [+]
  40. NANOGrav constraints on gravitational wave bursts with memory
    Z. Arzoumanian et al.*
    Astrophys. J. 810, 150 (2015) [+]
  41. The LIGO Open Science Center
    M. Vallisneri, J. Kanner, R. Williams, A. Weinstein and B. Stephens
    J. Phys. Conf. Series. 610, 012021 (2015) [+]
  42. Low-rank approximations for large stationary covariance matrices, as used in the Bayesian and generalized-least-squares analysis of pulsar-timing data
    R. van Haasteren and M. Vallisneri
    MNRAS 446, 1170 (2015) [+]
  43. New advances in the Gaussian-process approach to pulsar-timing data analysis
    R. van Haasteren and M. Vallisneri
    Phys. Rev. D 90, 104012 (2014) [+]
  44. Gravitational waves from individual supermassive black-hole binaries in circular orbits: limits from the North-American nanohertz observatory for gravitational waves
    Z. Arzoumanian et al.*
    Astrophys. J 794, 141 (2014) [+]
  45. Bayesian inference for pulsar timing models
    S. J. Vigeland and M. Vallisneri
    MNRAS 440, 1446 (2014) [+]
  46. The gravitational-wave discovery space of pulsar timing arrays
    C. Cutler, S. Burke-Spolaor, M. Vallisneri, J. Lazio, and W. Majid
    PRD 89, 042003 (2014) [+]
  47. Testing general relativity with low-frequency, space-based gravitational-wave detectors
    J. R. Gair, M. Vallisneri, S. L. Larson, and J. G. Baker
    Living Reviews in Relativity 16, 7 (2013) [+]
  48. Stealth bias in gravitational-wave parameter estimation
    M. Vallisneri and N. Yunes
    Phys. Rev. D 87, 102002 (2013) [+]
  49. eLISA: Astrophysics and cosmology in the millihertz regime
    P. Amaro-Seoane et al.*
    GW notes 6, 4 (2013) [+]
  50. Searching for gravitational waves from binary coalescence
    S. Babak et al.*
    Phys. Rev. D 87, 024033 (2013) [+]
  51. Gravitational-wave emission from compact Galactic binaries
    S. Nissanke, M. Vallisneri, G. Nelemans, and T. A. Prince
    Astrophys. J. 758, 131 (2012) [+]
  52. Testing general relativity with gravitational waves: a reality check
    M. Vallisneri
    Phys. Rev. D 86, 082001 (2012) [+]
  53. Low-frequency gravitational-wave science with eLISA/NGO
    P. Amaro-Seoane et al.*
    Class. Quantum Grav. 29, 124016 (2012) [+]
  54. Non-sky-averaged sensitivity curves for space-based gravitational-wave observatories
    M. Vallisneri and C. R. Galley
    Class. Quantum Grav. 29, 124015 (2012) [+]
  55. Beyond the Fisher-matrix formalism: exact sampling distributions of the maximum-likelihood estimator in gravitational-wave parameter estimation
    M. Vallisneri
    Phys. Rev. Lett. 107, 191104 (2011) [+]
  56. Searches for Cosmic-String Gravitational-Wave Bursts in Mock LISA Data
    M. I. Cohen, C. Cutler, and M. Vallisneri
    Class. Quant. Grav. 27, 185012 (2010) [+]
  57. The Mock LISA Data Challenges: from Challenge 3 to Challenge 4
    MLDC taskforce and MLDC3 participants*
    Class. Quant. Grav. 27, 084009 (2010) [+]
  58. Cover art: issues in the metric-guided and metric-less placement of random and stochastic template banks
    G. M. Manca and M. Vallisneri
    Phys. Rev. D 81, 024004 (2010) [+]
  59. A LISA Data-Analysis Primer
    M. Vallisneri
    Class. Quant. Grav. 26, 094024 (2009) [+]
  60. The Mock LISA Data Challenges: from Challenge 1B to Challenge 3
    MLDC taskforce and MLDC1B participants*
    Class. Quant. Grav. 25, 184026 (2008) [+]
  61. Report on the second Mock LISA Data Challenge
    MLDC taskforce and MLDC2 participants*
    Class. Quant. Gravity 25, 114037 (2008) [+]
  62. Sensitivity and parameter-estimation precision for alternate LISA configurations
    M. Vallisneri, J. Crowder, and M. Tinto
    Class. Quant. Gravity 25, 065005 (2008) [+]
  63. Use and Abuse of the Fisher Information Matrix in the Assessment of Gravitational-Wave Parameter-Estimation Prospects
    M. Vallisneri
    Phys. Rev. D 77, 042001 (2008) [+]
  64. Python and XML for agile scientific computing: the Mock LISA Data Challenges
    M. Vallisneri and S. Babak
    Computing in Science and Engineering 10, 80 (2008) [+]
  65. LISA detections of massive black hole inspirals: parameter extraction errors due to inaccurate template waveforms
    C. Cutler and M. Vallisneri
    Phys. Rev. D 76, 104018 (2007) [+]
  66. A three-stage search for supermassive black-hole binaries in LISA data
    D. A. Brown, J. Crowder, C. Cutler, I. Mandel, and M. Vallisneri*
    Class. Quant. Grav. 24, S595 (2007) [+]
  67. Report on the first round of the Mock LISA Data Challenges
    MLDC taskforce and MLDC1 participants*
    Class. Quant. Grav. 24, S529 (2007) [+]
  68. An overview of the second round of the Mock LISA Data Challenges
    MLDC taskforce*
    Class. Quant. Grav. 24, S551 (2007) [+]
  69. Detecting gravitational waves from precessing binaries of spinning compact objects: II. Search implementation for low-mass binaries
    A. Buonanno, Y. Chen, Y. Pan, H. Tagoshi, and M. Vallisneri*
    Phys. Rev. D 72, 084027 (2005) [+]
  70. Geometric Time Delay Interferometry
    M. Vallisneri
    Phys. Rev. D 72, 042003 (2005) [+]
  71. TDIR: Time-Delay Interferometric Ranging for space-borne gravitational-wave detectors
    M. Tinto, M. Vallisneri, and J. W. Armstrong
    Phys. Rev. D 71, 041101(R) (2005) [+]
  72. Synthetic LISA: Simulating Time Delay Interferometry in a Model LISA
    M. Vallisneri
    Phys. Rev. D 71, 022001 (2005) [+]
  73. Post-processed time-delay interferometry for LISA
    D. A. Shaddock, B. Ware, R. E. Spero, and M. Vallisneri
    Phys. Rev. D 70, 081101(R) (2004) [+]
  74. Quasiphysical family of gravity-wave templates for precessing binaries of spinning compact objects: Application to double-spin precessing binaries
    A. Buonanno, Y. Chen, Y. Pan, and M. Vallisneri*
    Phys. Rev. D 70, 104003 (2004) [+]
  75. Event rate estimates for LISA extreme mass ratio capture sources
    J. R. Gair, L. Barack, T. Creighton, C. Cutler, L. Larson, E. S. Phinney, and M. Vallisneri
    Class. Quant. Grav. 21, S1595 (2004) [+]
  76. Optimal filtering of the LISA data
    A. Królak, M. Tinto, and M. Vallisneri
    Phys. Rev. D 70, 022003 (2004) [+]
  77. Physical template family for gravitational waves from precessing binaries of spinning compact objects: Application to single-spin binaries
    Y. Pan, A. Buonanno, Y. Chen, and M. Vallisneri*
    Phys. Rev D 69, 104017 (2004) [+]
  78. Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit
    A. Buonanno, Y. Chen, and M. Vallisneri*
    Phys. Rev. D 67, 104025 (2003) [+]
  79. Detection template families for gravitational waves from the final stages of binary--black-hole inspirals: Nonspinning case
    A. Buonanno, Y. Chen, and M. Vallisneri*
    Phys. Rev. D 67, 024016 (2003) [+]
  80. Ephemeral point-events: is there a last remnant of physical objectivity?
    M. Pauri and M. Vallisneri
    Diálogos 79, 263 (2002) [+]
  81. Numerical evolutions of nonlinear r-modes in neutron stars
    L. Lindblom, J. Tohline, and M. Vallisneri
    Phys. Rev. D 65, 084039 (2002) [+]
  82. Non-linear evolution of the r-modes in neutron stars
    L. Lindblom, J. Tohline, and M. Vallisneri
    Phys. Rev. Lett. 86, 1152 (2001) [+]
  83. Maerzke-Wheeler coordinates for accelerated observers in special relativity
    M. Pauri and M. Vallisneri*
    Found. Phys. Lett. 13, 401 (2000) [+]
  84. Prospects for gravity-wave observations of neutron-star tidal disruption in neutron-star/black-hole binaries
    M. Vallisneri
    Phys. Rev. Lett. 84, 3519 (2000) [+]
  85. Classical roots of the Unruh and Hawking effects
    M. Pauri and M. Vallisneri*
    Foundations of Physics 29, 1499 (1999) [+]

Clicking on [+] will display hyperlinks and further information


Articles with the LIGO Scientific Collaboration [-]

I am a coauthor on a large number of papers by the LIGO and Virgo Scientific Collaborations; here I list only those in which I had a direct involvement.

  1. Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo
    LIGO Scientific Collaboration
    SoftwareX 13, 100658 (2021) [+]
  2. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
    LVC
    Phys. Rev. Lett. 119, 161101 (2017) [+]
  3. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence
    LVC
    Phys. Rev. Lett. 119, 141101 (2017) [+]
  4. Binary Black Hole Mergers in the first Advanced LIGO Observing Run
    LVC
    Phys. Rev. X 6, 041015 (2016) [+]
  5. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
    LVC
    Phys. Rev. Lett. 116, 241103 (2016) [+]
  6. An improved analysis of GW150914 using a fully spin-precessing waveform model
    LVC
    Phys. Rev. X 6, 041014 (2016) [+]
  7. Supplement: The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914
    LVC
    arXiv/1606.03939 (2016) [+]
  8. The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914
    LVC
    Astrophys. J. Lett. 833, L1 (2016) [+]
  9. Tests of general relativity with GW150914
    LVC
    Phys. Rev. Lett. 116, 221101 (2016) [+]
  10. Observation of Gravitational Waves from a Binary Black Hole Merger
    LVC
    Phys. Rev. Lett. 116, 061102 (2016) [+]
  11. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in 186 Days of LIGO's fifth Science Run
    LSC
    Phys. Rev. D 80, 047101 (2009) [+]
  12. Search for gravitational waves from binary inspirals in S3 and S4 LIGO data
    LSC
    Phys. Rev. D 77, 062002 (2008) [+]
  13. Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals
    LSC
    Phys. Rev. D 78, 042002 (2008) [+]
  14. Search for gravitational waves from binary black-hole inspirals in LIGO data
    LSC
    Phys. Rev. D 73, 062001 (2006) [+]

Clicking on [+] will display hyperlinks and further information


Articles with the International Pulsar Timing Array [+]


Other technical papers [+]


Conference proceedings [+]


Outreach articles and contributions [+]


Websites [+]


© M. Vallisneri 2014 — last modified on 2024/01/18