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Abstract

DRAFT. We estimate the detection rate for LISA capture sources: extreme-mass-ratio inspirals

(EMRIs) of stellar-mass compact objects into massive black holes at the centers of galaxies. We

show how the detection rate depends on different assumptions about the instrument (5 × 106 km

arms vs. 1.7 × 106km, 3 arms vs. only 2 arms) and assumptions about how well the galactic

WD-binary confusion noise can be subtracted out.
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I. INTRODUCTION

The LISA detection rate for capture sources basically depends on three factors: i) the ac-

tual astrophysical capture rate (in Mpc−3yr−1), ii) LISA’s sensitivity to captures (expressed,

e.g., as LISA’s matched filtering SNR for a fiducial source at some fiducial distance), and

(iii) the SNR required for detection when computationally realistic algorithms are used to

dig the capture signals out of the noise. This document summarizes what Working Group I

has learned about these 3 factors and synthesizes them to obtain estimated detection rates.

We divide sources into 12 classes: three mass ranges for the MBH multiplied by four

types of stellar-mass object– 0.6M� WDs, 1.4M� NSs and heavy WDs, 10M� BHs, and

100M� Pop III BHs. We estimate LISA detection rates for each class, for several different

assumptions about the LISA instrumental and confusion noise levels.

Section II gives our estimate of capture rates for the different source classes. Sec. III

describes our different models of the instrumental and confusion noise. Sec. IV displays

LISA’s sensitivity to various classes of sources of kludged waveforms (parametrized by MBH

mass and captured-object mass), assuming optimal matched filtering. Sec V compares our

kludged waveforms to honest full-GR waveforms in the circular orbit cases for which the

latter are available. Since optimal matched filtering is computationally impossible, Sec. VI

sketches a sub-optimal, semi-coherent search method and estimates the effective decrease

in LISA’s sensitivity (compared to optimal filtering) using this method. An important step

in this estimate is counting the number of templates that must be searched over, which

determines the search’s computational cost. Sec. VII folds the different pieces together to

estimate detection rates, and Sec. VIII summarizes the results and makes recommendations.

II. CAPTURE RATES

To compute the normalisation of the present-day EMRI capture rate, we need the dis-

tribution of supermassive black hole masses in galactic nuclei and an understanding of the

current structure of their nuclei (computing the cosmic evolution of the capture rate addi-

tionally requires the even less well known growth and evolution of the black holes and their

clusters, though we give a suggested scaling in equation 14 which neglects this evolution).

2



The tightest black hole mass indicator is the correlation with spheroid velocity dispersion

M• = M•,∗(σ/σ∗)
λ (1)

where σ is the galaxy velocity dispersion, σ∗ = 90km s−1 and h65 = H0/65km s−1Mpc−1,

and we adopt λ = 5 and M•,∗ = 3 × 106h−1
65 M�. Merritt and Ferrarese (2002) find λ = 4.72

and M•,∗ = 3×106M�. (Ferrarese and Merrit use dispersion in aperture re/8; often these are

corrected from measured central values -i.e. the same prescription and σ’s used in the φ(σ)

distribution function below.) Tremaine et al(2002) find λ = 4.02 and M•,∗ = 5 × 106M�,

but use a nonstandard definition of dispersion which includes rotation and is averaged over

an aperture of re, the half-light radius.

We considered two ‘observational’ sources of the galaxy velocity dispersion function: the

Sloan Digital Sky Survey direct measurement (Sheth et al 2003), and indirect inferences

(from Luminosity functions and L − σ correlations) by Aller and Richstone (2002). The

former would have been preferred, but it seems highly suspect in the range of interest,

probably because the Sloan spectrometer has inadequate velocity resolution.

The distribution of velocity dispersions (space density per ln σ) of early-type galaxies in

SDSS is (Sheth et al 2003)

σφ(σ) =
dN

d ln σ
= φ∗

β

Γ(α/β)

(

σ

σ∗

)α

exp[−(σ/σ∗)
β] (2)

with (rounded) best fit values of φ∗ = 0.0018h3
65Mpc−3 (note that φ∗ =

∫∞

0 φ(σ)dσ is the

total number density of early-type galaxies), α = 6.5, β = 2, σ∗ = 90km s−1. Γ(6.5/2) =

2.55. Note that the Sloan dispersion measurements are of the light within a radius of

1.5 arcsec, and have been corrected to the dispersion at a standard fraction re/8 of the

galaxies effective radius (determined from photometry) using an average dispersion profile:

σ = σ(1.5arcsec)([re/8]/1.5arcsec)0.04 (equation 1 of Bernardi et al), and because of the low

spectrograph resolution, are unreliable for σ < 70km s−1. Galaxies with lower dispersions

(i.e. black hole masses below 9 × 105M�) are not included in the sample (Appendix B of

Bernardi et al 2003), and the functional form is observationally unconstrained there.

Temporarily neglecting the dispersion in the M•−σ relation, we translateN(σ) toN(M•),

and find

M•dN(M•)/dM• = N(σ(M•))d lnσ/d lnM• (3)

= θ∗(M•/M•,∗)
γ exp [−(M•/M•,∗)

ε] Mpc−3 , (4)
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M•,∗ θ∗ γ ε ρ•

Galaxy Type (107h−1
65 M�) (10−3h3

65Mpc−3) 105h2
65M�Mpc−3

E+S0 (Sheth) 0.3 0.28 1.26 0.4 1.4 (λ = 5)

E+S0 (Sheth) 0.5 0.35 1.63 0.5 1.3 (λ = 4)

E (A& R) 17 0.3 0.12 0.8 0.6

S0 (A& R) 5 1.6 0.046 0.8 0.8

Sa-Sb (A& R) 2 1.8 0.32 0.8 0.4

Sc-Sd (A& R) 0.5 0.9 0.03 0.8 0.04

TABLE I: Parameters for black hole space densities in equation 5.

with θ∗ = φ∗β/(λΓ[α/β]) = 2.8 × 10−4h3
65, γ = α/λ = 1.26 and ε = β/λ = 2/5 for λ = 5

and 1/2 for λ = 4.

Aller and Richstone (2002) convert luminosity functions of galaxies as a function of galaxy

type to bulge velocity dispersion functions using (assuming no dispersion in the Faber-

Jackson relation between luminosity and velocity dispersion) and typical ratios of bulge to

disk luminosities as a function of galaxy type, and then use these to derive a black hole mass

functions for the various galaxy types. They give this in the form identical to eq 4:

M•dN/dM• = θ∗(M•/M•,∗)
γ exp(−(M•/M•,∗)

ε) (5)

with ε = 3.08/λ, so ε = 0.8 for λ = 4 and ε = 0.6 for λ = 5.

With this functional form, the contribution to the mass density of black holes is

ρ• = θ∗M•,∗ε
−1Γ([γ + 1]/ε) (6)

given in the last column of the table for the specified values of λ and hence ε (the Aller and

Richstone 2002 entries are all for λ = 4). The total Aller and Richstone 2002 density, for

(H0 = 65) is 1.9 × 105M�Mpc−3 for λ = 4.

The total E+S0 density from the Sheth measured dispersion function agrees well with

the one Aller and Richstone inferred from the luminosity functions. However, the actual

space densities (see figure 1) are very different in the range relevant for EMRI: the Sheth et

al dispersion function has 2× 10−2 of the density of E+S0 galaxies containing 106M� black

holes as does the Aller and Richstone one. In the range where the Sheth et al space density
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FIG. 1: Black hole space densities derived as described in text. The solid red line labeled E+S0

(Sheth) is based on the SDSS velocity dispersion function of Sheth et al 2003 and the M• − σ

relation of Merrit & Ferrarese 2001. The other curves are from the luminosity-dispersion relations

for galaxies used in Aller and Richstone 2002, and the M• − σ relation of Tremaine et al 2002.

is observationally constrained (M• > 2 × 106M�) it lies well below the Aller and Richstone

E+S0 curve for M• < 7 × 107M� and well above it for M• > 7 × 107M�. The total E+S0

black hole mass density coincidentally comes out about the same. Because the Sheth et al

dispersion function is poorly determined in the range of interest for EMRI, we prefer to use

the Aller and Richstone curves, despite their indirect provenance.

The Aller and Richstone (2002) black hole space densities have similar shape, but are
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about 1/3 those of Salucci et al (1999; note that Salucci et al use H0 = 75km s−1Mpc−1) in

the 105 < M• < 107M� range of interest.

To good approximation, the total Aller and Richstone black hole space density in the

range for M• < 5 × 106M� is simply

M•dNAR/dM• = 3 × 10−3h2
65Mpc−3 (7)

This is contributed mainly by S0 galaxies. If Sc-Sd galaxies are removed (at least some

of these –e.g. M33 (Gebhardt et al 2001) and NGC 4395 (Filippenko and Ho 2003) have

central black holes with masses much lower than would be derived from their luminosities

using Aller and Richstone’s procedure), the space density would be lowered by a factor of

about 2.

This lowered value we adopt as our reference black hole space density:

M•dNESP/dM• = 1.5 × 10−3h2
65Mpc−3 (8)

valid forM• < 5×106M�. The total space densities in black holes in a range ∆ log10 M• = 0.5

are just 1.15 times M•dNESP/dM•, i.e. 1.7 × 10−3h2
65Mpc−3.

Freitag’s Milky Way simulation (which coincidentally has just about σ = σ∗ and an

M• = 4 × 106M�, has present-day capture rates for 9M� black holes of 10−6y−1, for 1.4M�

neutron stars of 10−6y−1, and for 0.6M� white dwarfs of 5 × 10−6y−1. For the ∼ 100M�

black hole remnants of Population III stars, we take the dynamical friction rate of 2 per

Gyr in the Milky Way from Madau and Rees (2001), and optimistically assume that half of

these are captured by gravitational radiation (the rest being direct captures).

To scale these to other galaxies, we make use of the observation (Gebhardt et al 1996, Rest

et al 2001) that bright galaxies (with M• > 108M�) have shallow stellar cusps ρ∗ ∝ r−1,

while fainter galaxies (with M• < 108M�), i.e. those relevant to LISA detection, have

singular isothermal cusps

ρ∗ = σ2
∗/(2πGr

2) ∝ r−2 . (9)

We scale the central black hole mass as M̃ ≡ M/(5× 106M�) 'M/M•,∗. The black hole

dominates the dynamics inside

r < rgr ≡ GM•/σ
2
∗ = 2.5M̃1/2pc (10)
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The relaxation time for stars of mass m is

trel(r) ' 0.3
σ3
∗

G2mρ∗(r) lnΛ
. (11)

This is also the dynamical friction time for bodies of mass m much larger than the mean.

For r > rgr, substituting the singular isothermal ρ∗(r) we get

trel ' 2
σ∗r

2

Gm ln Λ
(12)

' 2 × 1010yM̃1.25(r/rgr)
2 (13)

for r > rgr.

Thus only M• < M•,∗ black holes have fully relaxed cusps (r = rgr).

The mass in relaxed stars is Mrel = M•M̃
−5/8 = M•,∗M̃

3/8, the mass from which stars

of mass m larger than the mean have sunk to the center by dynamical friction is Mdf =

Mrel(m/〈m〉)1/2. If the mass function was independent of radius, the rate of supply of heavy

objects to the center by dynamical friction scales just as

Ṁ ∼Mdf (t)/t ∝ rdf/t ∝ t−1/2 (14)

This could be an appropriate redshift scaling for black hole EMRI out to modest redshifts

(∼ 1) at which the central black hole masses and stellar cusp composition were not very

different from the present.

Since these heavy bodies are captured mainly by large-angle scattering (see Sigurdsson

& Rees 1997) the present rate of gravitational capture is comparable to the direct plunge

rate (since they come from a comparable range of initial pericenters). Thus the capture rate

is approximately half of the dynamical friction rate. Furthermore the capture time is short

compared to a Hubble time, so the EMRI rate is limited by the dynamical friction rate. If

we denote by f the fraction of the total stellar mass in the remnants of interest (with a

Kroupa IMF and standard initial-final mass relations, f = 0.2 for 0.7M� white dwarfs and

f = 0.03 for 10M� black holes, while f = 4 × 10−5 for ∼ 100M� Pop III black holes (cf.

Madau & Rees 2001), we predict an EMRI rate in the galaxy today of

1

2

fMdf

mt
' (fM•,∗/2mt)M̃

3/8(m/〈m〉)1/2 ' 10−4fM̃3/8(m/M�)−1/2y−1 , (15)

where we used 〈m〉 = 1M�. ForM = M•,∗, the EMRI rates predicted by this simple equation

agree with the rate from Freitag’s simulation for 10M� black holes, and within a factor of
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M• space density Merger rate R

M� 10−3h2
65Mpc−3 Gpc−3y−1

0.6M� WD 1.4M� MWD/NS 10M� BH 100M� PopIII

106.5±0.25 1.7 8.5 1.7 1.7 1.7 × 10−3

106.0±0.25 1.7 6 1.1 1.1 10−3

105.5±0.25 1.7 3.5 0.7 0.7 7 × 10−4

TABLE II: Rates of EMRI merger for three ranges of supermassive black hole mass and four types

of compact objects, based on Aller and Richstone 2002 E+S0+Sa/Sb black hole space densities,

Freitag 2001 merger rates for 106.5M� black hole, and rate scaling with black hole mass from

equation 15.

two with the Madau-Rees estimate for 100M� black holes. Not surprisingly, for white dwarfs

eq 15 overpredicts the rate by a factor of 4 compared to Freitag’s simulations (the capture

time for WD is not less than the Hubble time, and mass segregation discriminates against the

lower mass white dwarfs), so a much larger fraction of captures are direct, not gravitational

bremsstrahlung). However, the M̃3/8 scaling of the present rate with black hole mass should

be fairly accurate for all stellar components, so we have used this to scale Freitag’s rates for

the Milky Way (used to generate the top line of table II) to the other table entries.

What are the uncertainties of the rates in Table II? The space densities for the dominant

E+S0 galaxies implied by the SDSS dispersion distribution are more than an order of magni-

tude lower (see fig 1). But the fit is not to be trusted in this mass range because of the poor

resolution of SDSS spectra. Hils and Bender 1995 [14] estimated a white dwarf EMRI rate

in M32 of 2×10−8y−1, compared to our extrapolation from Freitag of 3×10−6y−1. However

Hils and Bender assumed a cusp grown adiabatically ρ ∝ r−1.5, rather than a relaxed cusp

(ρ ∝ r−1.75 − r−2), and only half as many white dwarfs as modern IMFs predict. Sigurdsson

and Rees (1997) assumed relaxed cusps, and estimated a white dwarf EMRI rate in the

Milky Way of 10−7y−1, a factor of 50 below Freitag’s rate. However their cusps were not

fully self-consistent, and did not include mass-segregation in a multi-mass system including

black holes. Nevertheless, Freitag’s simulations have not been independently verified, and

they have a number of oversimplifications and limitations (e.g. inability to treat large-angle

scattering; scattering turned off if gravitational capture time less than scattering time).
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Conservative rate estimates for white dwarfs would therefore be 10−2 of those in Table II.

The rate estimates for black holes are more robust to stellar dynamics, but depend on the

mass fraction of stellar mass black holes —i.e. the IMF, initial-final mass relation and pos-

sible natal kick velocities. The increasing number of galactic black hole binaries give some

confidence that these are not wildly different from our assumptions. But allowing an order

of magnitude reduction in rate might be prudent.

III. THE LISA NOISE CURVE

We consider in this document the standard Pre-phase A LISA with 5× 106km arms. We

also consider a “short LISA” with arms of 1.6 × 106km. The white dwarf confusion noise

we estimate in an ‘optimistic’ way: assuming that every white dwarf not sharing a 1/5yr

frequency bin with another can be removed perfectly, and a ‘pessimistic’ way: using Cornish

and Larson’s gCLEAN algorithm on simulated frequency ranges with 3-years of LISA data,

and measuring the residual noise after souces are fitted.

A. The Instrumental Noise

Our treatment of the instrumental noise is based on the noise budget of the LISA Pre-

Phase A Report. When counting templates (as opposed to calculating SNRs), we use simple

analytic fits (sums of power laws) to the actual noise.

The plots shown in Figures 2 and 3 do not look like the usual LISA sensitivity plots.

This is because they are are for the raw instrumental noise spectrum processed through the

A (or E or T ) TDI variable. The raw instrumental noise is taken to be the combination

of proof-mass (sometimes called ”acceleration”) noise Npm, and the aggregate optical path

noise Nop (broken up in the LPPA report as a ”postion noise budget”, for which laser shot

noise is the largest single contributor).

The spectral densities of these individual noises are given by

Npm =





√

SpmL

c2





2

, (16)
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and

Nop =





√

Sop

L





2

, (17)

where L is the characteristic armlength of the interferometer (L = 5×109 m for the standard

LISA), c is the speed of light, and

√

Spm = 3.0 × 10−15ms−2Hz−1/2 , (18)

and
√

Sop = 2.0 × 10−11mHz−1/2 , (19)

are the noise specifications for the observatory (the values given here are the baseline LPPA

values).

The noise in the TDI A channel[32] is given by

SA = NpmRpm +NopRop , (20)

where Rpm and Rop are respectively the noise transfer functions for proof-mass noise and

optical-path noise in the A channel. They are given by

Rpm = 2sinc2

[

u

2

]

· 2(3 + 2 cos(u) + cos(2u)) , (21)

and

Rop = 2sinc2

[

u

2

]

· u4(2 + cos(u)) , (22)

parameterized by the dimensionless parameter u = 2πfL/c.

Figures 2 and 3 show plots of Eq. (20) composited with estimates of the astrophysical

noise background due to galactic binaries, which we now describe.

B. The WD-binary Confusion Noise

We use two alternative versions of the WD confusion noise curve. The first, which follows

Barack & Cutler (2003), is a rather optimistic version that assumes the WD binaries can

basically be subtracted out to the level suggested by Shannon’s Theorem. The second,

more conservative, version uses the same assumptions about background populations as the

first, but assumes the WD noise is reduced only to the level currently attainable with the

gCLEAN algorithm developed by Cornish & Larson (2003).
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The relevant section of Barack & Cutler (2003) is reprinted here for convenience.

Any isotropic background of indistinguishable GW sources represents (for the purpose of

analyzing other sources) a noise source with spectral density [1]

Sconf
h (f) =

3

5π
f−3ρcΩGW (f) , (23)

where ρc ≡ 3H2
0/(8π) is the critical energy density needed to close the universe (assuming it

is matter-dominated) and ΩGW ≡ (ρc)
−1dρGW/d(ln f) is the energy density in gravitational

waves (expressed as a fraction of the closure density) per logarithmic frequency interval[33].

For the extragalactic WD background, Farmer and Phinney [7] estimate that, for f near

1 mHz, ΩGW (f) = 3.6 × 10−12(f/10−3Hz)2/3 [at H0 = 70km/(sec · Mpc)], so

Sex. gal
h = 4.2 × 10−47

(

f

1Hz

)−7/3

s. (24)

Note Eq. (24) is not a good fit to Sex. gal
h for f ∼> 10−2Hz, where mergers cause the spectrum to

decrease more sharply. However, at such high frequencies, instrumental noise dominates the

total noise in any case, so for our purposes the extrapolation of Eq. (24) to high frequencies

is harmless.

A recent calculation of the galactic confusion background by Nelemans et al. [21] yields

an Ωgal
GW that is 5.0 × 101 times larger than Ωex. gal

GW (near 1 mHz) [7]; therefore [34]

Sgal
h (f) = 2.1 × 10−45

(

f

1Hz

)−7/3

s . (25)

This is larger than instrumental noise in the range ∼ 10−4–10−2 Hz. However, at frequencies

f ∼> 3×10−3 Hz, galactic sources are sufficiently sparse, in frequency space, that one expects

to be able to “fit them out” of the data. An estimate of the resulting noise is [17]

S inst+gal
h (f) = min

{

S inst
h (f)/ exp(−κT−1dN/df), S inst

h (f) + Sgal
h (f)

}

. (26)

Here dN/df is the number density of galactic white dwarf binaries per unit GW frequency,

T is the LISA mission lifetime (so ∆f = 1/T is the bin size of the discretely Fourier

transformed data), and κ is the average number of frequency bins that are “lost” (for the

purpose of analyzing other sources) when each galactic binary is fitted out (κ is larger

than one because LISA’s motion effectively smears the signal from each binary over several

frequency bins). The factor exp(−κT−1dN/df) is therefore the fraction of “uncorrupted”
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bins, where instrumental noise still dominates. For dN/df we adopt the estimate [17]

dN

df
= 2 × 10−3 Hz−1

(

1 Hz

f

)11/3

(27)

and take κT−1 = 1.5/yr (corresponding to T ≈ 3 yr and κ ≈ 4.5 [4]). To obtain the

total LISA noise, we just add to Eq. (26) the contribution from the extragalatic confusion

background, Eq. (24):

Sh(f) = S inst+gal
h (f) + Sex. gal

h (f) . (28)

IV. MONTE CARLO SIMULATION OF LISA DETECTIONS

The Monte Carlo evaluation of S/Ns for the detection of gravitational captures by LISA

was performed as follows:

1. A set of GW signals (h+ and h× strains at the Solar-system baricenter) was computed

for the last five years before plunge of 18 EMRI systems, with parameters

(M/M�, m/M�, final e) =













3 · 105

106

3 · 106













×













0.6

10

100













×







0.25

0.40





 . (29)

The signals were computed using the Hughes–Glampedakis–Kennefick–Gair–

Creighton kludge scheme. For each system, the source was assigned to ecliptic latitude

and longitude 0, and three different values (0, π/2, π) of source inclination to the line

of sight were considered. The other parameters of the system were fixed as follows:

a/M = 0.8; initial orbital inclination = π/4; polarization rotation angle ψ = 0; initial

semilatus rectum P compatible with the final eccentricity requested; initial eccentricity

e compatible with the final eccentricity requested; initial phases ψ0 = π/3, χ0 = π/5,

φ0 = π/7.

2. The signals were then filtered through Synthetic LISA (a simulator of the LISA TDI

process currently under development at JPL by M. Vallisneri and J. Armstrong) to pro-

duce TDI series for the (first-generation) single-interferometer unequal-arm-Michelson

combination X, and for the optimal interferometric combinations A, E, and T [see

Prince et al., Phys. Rev. D 66, 122002 (2002)]. These series are expressed in terms of
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fractional laser frequency fluctuations (the standard TDI Doppler observables). The

filtering was repeated for the baseline LISA configuration, and for short LISA.

LISA was modeled as a rigid equilateral triangle of three spacecraft on circular, inclined

orbits. These orbits represents a very good approximation, as far as the GW signals

are concerned, to the actual eccentric orbits. The LISA array was taken to be initially

located along the x axis of a Solar-system-baricentric, ecliptic system, with spacecraft

1 sitting along the negative y axis.

3. Synthetic LISA was also used to generate synthetic time series of the LISA secondary

noises (proof mass and optical path) for the TDI observables of interest. We computed

a periodogram of the time series, and averaged it to reduce the variance of the result-

ing spectra. For short LISA, the noise parameters were adjusted by reducing photon

shot noise appropriately and by changing the time delays in the TDI combinations.

Galactic WD confusion noise was added consistently with Cutler and Barack’s opti-

mistic scenario (for 5 yr subtraction) and with a pessimist scenario based on fitting

the residual noise after gCLEANing the data (for 3 yr subtraction). Specifically, the

confusion noise was added, at each frequency, by dividing Cutler and Barack’s LISA

sensitivity curve with confusion noise by the same curve without confusion noise, and

by multiplying the Synthetic LISA spectrum by the resulting ratio. For short LISA,

a fit to Larson’s online sensitivity generator was used instead of Cutler and Barack’s

curve.

4. The S/Ns of the signals were computed in the Fourier domain, using the noise spectra

obtained at step 3, and are shown in Tables III to VI. The columns correspond to the

S/N integrated for the last 5 yr, 3 yr, 1 yr, 3 mo, 1 mo, and 1 wk before plunge. The

S/Ns shown are cube-root-cube averaged (see captions), to yield numbers that can be

used directly to estimate detection rates (see below).

5. An estimate of the effect of averaging over source positions in the sky was obtained

by computing S/N for 3-month stretches of data, for various ecliptic latitudes and

longitudes, and by cube-root-cube averaging the resulting S/N. While the results are

not definite enough to quote a correction factor to the numbers of Tables III to VI,

the correction should be within ±10%.
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FIG. 2: The height above the TDI Doppler instrument+white dwarf noise (dotted) gives the

contribution to the numerically-kludged (full Kerr geodesics, but quadrupole power only -see figures

4 and 5) signal to noise in the AE TDI combination as a function of frequency for the indicated

time intervals of the inspiral of a 10M� black hole into a 3 × 106M� black hole, with eccentricity

at plunge of 0.4. Source is in the ecliptic plane, viewed along the black hole spin axis, and orbit is

inclined at 45 degrees prograde to a/M = 0.8 black hole.

6. A breakdown of the S/Ns among a set of frequency bins in the LISA band are shown

in Figs.

As explained in detail in section III, the dotted curves shows the spectra of fractional-

frequency-fluctuation noise in the TDI observable (the bump in the middle corresponds

to WD confusion noise, while the flat low-frequency behavior is explained by the TDI

transfer function ∝ f 2 for proof-mass noise, which by itself is ∝ f−2). The height of
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FIG. 3: As in figure 2, but for a 0.6M� white dwarf inspiraling into a 1 × 106M� black hole, with

eccentricity at plunge of 0.25.

the dots over the noise curve shows the integrated (S/N)2 for a given frequency bin of

logarithmic width 0.15, ending at the frequencies on the abscissa. Curves of different

colors correspond to different, nonoverlapping epochs in the 5 yrs before plunge, as

explained in the legend (which shows also cumulative (S/N)2 for the epochs). The

(S/N)2 curves are suppressed at low frequencies because of the inherent signal power

there, and because of the LISA transfer function.
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M m e (final) S/N(AET) S/N(X)

(1wk) (1mo) (3mo) (1yr) (3yr) (5yr) (1wk) (1mo) (3mo) (1yr) (3yr) (5yr)

3 · 105 0.6 0.25 1.1 3.0 5.1 10.2 16.8 20.4 0.6 1.6 2.2 5.8 10.2 12.6

3 · 105 10 0.25 27.8 60.3 80.4 119.0 149.0 162.0 16.6 38.0 48.8 74.7 95.4 104.0

3 · 105 100 0.25 277.0 440.0 508.0 591.0 626.0 633.0 188.0 300.0 338.0 391.0 414.0 419.0

106 0.6 0.25 3.7 7.3 10.0 18.5 29.0 34.9 2.5 4.9 6.3 12.0 19.0 23.0

106 10 0.25 58.2 109.0 140.0 205.0 252.0 271.0 40.5 75.5 92.9 136.0 168.0 181.0

106 100 0.25 477.0 752.0 860.0 989.0 1060.0 1090.0 338.0 532.0 595.0 678.0 727.0 743.0

3 · 106 0.6 0.25 3.1 6.0 8.0 14.1 21.2 24.9 2.2 4.2 5.4 9.5 14.3 16.7

3 · 106 10 0.25 45.7 81.8 102.0 138.0 158.0 164.0 32.7 57.8 69.8 93.9 107.0 111.0

3 · 106 100 0.25 344.0 508.0 559.0 590.0 601.0 604.0 244.0 360.0 391.0 411.0 418.0 420.0

3 · 105 0.6 0.4 1.3 3.0 4.5 8.2 11.6 13.1 0.9 2.0 2.6 4.8 6.8 7.7

3 · 105 10 0.4 24.9 46.7 56.7 69.2 75.3 76.6 16.1 29.1 33.8 41.3 45.1 45.9

106 0.6 0.4 3.4 6.7 9.2 16.6 25.3 30.0 2.3 4.5 5.8 10.7 16.4 19.5

106 10 0.4 52.8 96.9 122.0 177.0 223.0 241.0 36.4 66.3 80.3 116.0 147.0 159.0

106 100 0.4 405.0 639.0 743.0 871.0 926.0 938.0 284.0 445.0 504.0 586.0 623.0 631.0

3 · 106 0.6 0.4 3.2 6.1 8.1 14.5 22.4 27.0 2.3 4.2 5.4 9.7 15.1 18.1

3 · 106 10 0.4 46.3 84.5 108.0 162.0 208.0 226.0 32.7 59.6 73.2 109.0 140.0 152.0

3 · 106 100 0.4 370.0 596.0 696.0 826.0 898.0 921.0 264.0 422.0 481.0 566.0 614.0 629.0

TABLE III: Baseline LISA, optimistic WD subtraction (5yr), volume-inc-averaged: S/N =

(1/2
∫

(S/N)3 d cos ι)1/3.All values are for β = 0, λ = 0. Effect of position-in-the-sky averaging

is ±10%.

V. ACCURACY OF THE NUMERICAL WAVEFORMS

The numerical kludge waveforms used to estimate the signal to noise ratios in the preced-

ing section are only approximate. They are computed by calculating the quadrupole radia-

tion from a sequence of geodesics of the Kerr geometry. The parameters of the geodesic are

evolved using post-newtonian radiation reaction expressions to generate an inspiral [12]. The

actual radiation from an extreme mass ratio inspiral can be computed using the Teukolsky

formalism. At present, Teukolsky codes exist only for eccentric equatorial [13] or circular
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M m e (final) S/N(AET) S/N(X)

(1wk) (1mo) (3mo) (1yr) (3yr) (5yr) (1wk) (1mo) (3mo) (1yr) (3yr) (5yr)

3 · 105 0.6 0.25 1.1 3.0 5.1 10.2 16.5 19.8 0.6 1.6 2.2 5.7 10.0 12.1

3 · 105 10 0.25 27.7 59.8 78.9 114.0 141.0 151.0 16.6 37.7 47.9 71.1 89.3 96.2

3 · 105 100 0.25 269.0 418.0 479.0 548.0 575.0 581.0 182.0 284.0 318.0 361.0 379.0 383.0

106 0.6 0.25 3.6 7.1 9.7 17.7 26.9 31.5 2.5 4.8 6.2 11.5 17.6 20.7

106 10 0.25 56.3 104.0 130.0 174.0 199.0 207.0 39.1 71.4 86.3 115.0 132.0 138.0

106 100 0.25 431.0 631.0 693.0 744.0 769.0 777.0 304.0 445.0 481.0 514.0 530.0 535.0

3 · 106 0.6 0.25 2.1 4.0 5.2 8.4 11.3 12.4 1.5 2.8 3.5 5.6 7.6 8.3

3 · 106 10 0.25 28.3 46.6 54.4 62.2 66.2 67.9 19.9 32.5 37.4 42.4 45.0 46.1

3 · 106 100 0.25 169.0 212.0 222.0 235.0 244.0 249.0 118.0 147.0 154.0 162.0 168.0 171.0

3 · 105 0.6 0.4 1.3 3.0 4.4 8.0 11.1 12.5 0.9 2.0 2.6 4.6 6.4 7.3

3 · 105 10 0.4 24.5 45.1 54.4 66.6 72.6 73.9 15.8 27.8 32.0 39.3 43.0 43.9

106 0.6 0.4 3.3 6.4 8.8 15.6 23.4 27.6 2.2 4.3 5.5 10.0 15.1 17.9

106 10 0.4 49.9 90.3 113.0 162.0 200.0 214.0 34.3 61.4 74.0 106.0 131.0 141.0

106 100 0.4 371.0 583.0 671.0 767.0 806.0 815.0 258.0 404.0 455.0 515.0 541.0 547.0

3 · 106 0.6 0.4 2.4 4.6 6.0 10.2 14.9 17.3 1.7 3.2 4.0 6.8 10.0 11.6

3 · 106 10 0.4 33.2 58.2 71.7 95.0 110.0 115.0 23.2 40.6 48.7 64.1 73.9 77.4

3 · 106 100 0.4 236.0 344.0 379.0 414.0 433.0 439.0 166.0 240.0 262.0 285.0 297.0 301.0

TABLE IV: Baseline LISA, pessimistic WD subtraction (gCLEAN, 3yr), volume-inc-averaged:

S/N = (1/2
∫

(S/N)3 d cos ι)1/3. All values are for β = 0, λ = 0. Effect of position-in-the-sky

averaging is ±10%.

inclined orbits [16], and were too computationally intensive to be used for scoping out the

data analysis. It is useful to know how well the kludged inspirals approximate true inspirals

when interpreting our results.

Using the circular inclined Teukolsky code of Hughes [16], we computed the instantaneous

amplitude and inspiral rate from a sequence of geodesics along a kludged inspiral trajectory.

These were compared to the kludge waveforms and inspiral rates. The comparison was

performed for a 0.6M� black hole falling into a 1 × 106M� black hole with S/M 2 = 0.8.

Table VII compares the instantaneous inspiral rate d(r/M)/dt of the kludge and Teukolsky
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M m e (final) S/N(AET) S/N(X)

(1wk) (1mo) (3mo) (1yr) (3yr) (5yr) (1wk) (1mo) (3mo) (1yr) (3yr) (5yr)

3 · 105 0.6 0.25 2.6 4.7 6.5 13.2 20.3 23.8 1.6 2.9 3.9 7.9 12.2 14.4

3 · 105 10 0.25 51.5 81.7 99.9 135.0 160.0 170.0 31.8 52.0 61.8 82.6 98.1 104.0

3 · 105 100 0.25 401.0 526.0 577.0 637.0 661.0 666.0 253.0 335.0 364.0 399.0 413.0 416.0

106 0.6 0.25 5.2 8.4 11.0 19.2 27.7 31.7 3.2 5.4 6.8 11.7 16.9 19.4

106 10 0.25 76.8 115.0 137.0 173.0 194.0 202.0 47.1 73.3 85.4 107.0 120.0 125.0

106 100 0.25 520.0 660.0 707.0 756.0 783.0 791.0 327.0 419.0 446.0 475.0 491.0 496.0

3 · 106 0.6 0.25 2.3 3.7 4.7 7.8 11.1 12.8 1.4 2.3 2.9 4.8 6.8 7.8

3 · 106 10 0.25 31.5 46.4 54.9 69.2 77.0 79.2 19.1 29.3 34.2 42.8 47.5 48.9

3 · 106 100 0.25 212.0 268.0 285.0 299.0 307.0 310.0 130.0 167.0 178.0 186.0 191.0 193.0

3 · 105 0.6 0.4 2.6 4.4 5.8 10.1 14.0 15.8 1.6 2.8 3.5 6.0 8.4 9.4

3 · 105 10 0.4 42.0 60.7 70.2 85.4 92.5 94.0 26.3 38.3 43.4 52.1 56.4 57.3

106 0.6 0.4 4.8 7.7 10.0 17.5 25.8 30.3 2.9 4.9 6.2 10.7 15.7 18.4

106 10 0.4 70.0 105.0 127.0 173.0 207.0 220.0 43.1 67.0 79.0 107.0 127.0 135.0

106 100 0.4 496.0 663.0 732.0 813.0 847.0 854.0 309.0 421.0 461.0 508.0 528.0 532.0

3 · 106 0.6 0.4 2.6 4.1 5.2 9.0 13.3 15.7 1.5 2.6 3.2 5.5 8.2 9.6

3 · 106 10 0.4 35.5 53.7 65.1 90.6 110.0 118.0 21.4 33.9 40.5 55.8 67.9 72.6

3 · 106 100 0.4 260.0 351.0 390.0 442.0 471.0 480.0 159.0 220.0 244.0 274.0 292.0 298.0

TABLE V: Short LISA, optimistic WD subtraction (5yr), volume-inc-averaged: S/N =

(1/2
∫

(S/N)3 d cos ι)1/3. All values are for β = 0, λ = 0. Effect of position-in-the-sky averag-

ing is ±10%.

waveforms for one prograde and one retrograde orbit, at a number of points along the

inspiral. The points are labeled by the time from plunge, as measured using the kludged

inspiral. The Teukolsky results are for the orbit with the same radius and inclination, not

an orbit the same time from plunge. The inclination of the orbit ι is defined in terms of

the Carter constant [12]. Prograde orbits have 0 ≤ ι < π/2, and retorgrade orbits have

π/2 < ι ≤ π. The rate of change of ι is not shown in the table. In the kludge this is set

to zero. For the prograde orbit, the Teukolsky equation gives i̇ = 7.7 × 10−11 one week

from plunge, and i̇ = 2.1 × 10−11 three years from plunge. The corresponding rates for the
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M m e (final) S/N(AET) S/N(X)

(1wk) (1mo) (3mo) (1yr) (3yr) (5yr) (1wk) (1mo) (3mo) (1yr) (3yr) (5yr)

3 · 105 0.6 0.25 2.6 4.7 6.5 13.2 20.1 23.4 1.6 2.9 3.9 7.9 12.1 14.1

3 · 105 10 0.25 51.3 81.3 98.9 132.0 155.0 164.0 31.8 51.7 61.2 80.8 95.1 100.0

3 · 105 100 0.25 394.0 513.0 561.0 614.0 635.0 639.0 249.0 327.0 354.0 385.0 397.0 400.0

106 0.6 0.25 5.1 8.3 10.8 18.5 26.1 29.6 3.1 5.3 6.6 11.3 16.0 18.1

106 10 0.25 74.7 111.0 130.0 156.0 170.0 174.0 45.8 70.3 81.1 96.9 105.0 107.0

106 100 0.25 482.0 592.0 622.0 647.0 660.0 664.0 304.0 375.0 393.0 407.0 415.0 417.0

3 · 106 0.6 0.25 1.6 2.6 3.2 5.0 6.6 7.3 1.0 1.6 2.0 3.1 4.0 4.5

3 · 106 10 0.25 20.8 29.1 32.9 39.2 44.4 46.8 12.5 18.1 20.4 24.2 27.3 28.8

3 · 106 100 0.25 116.0 142.0 153.0 170.0 181.0 186.0 71.4 88.7 95.0 105.0 112.0 115.0

3 · 105 0.6 0.4 2.6 4.4 5.8 10.0 13.7 15.5 1.6 2.8 3.5 6.0 8.2 9.3

3 · 105 10 0.4 41.6 59.9 69.2 84.2 91.3 92.8 26.1 37.8 42.7 51.4 55.6 56.5

106 0.6 0.4 4.7 7.6 9.8 16.9 24.8 29.0 2.9 4.8 6.0 10.3 15.1 17.7

106 10 0.4 67.9 102.0 122.0 165.0 194.0 205.0 41.8 64.7 76.1 101.0 119.0 126.0

106 100 0.4 474.0 630.0 691.0 757.0 784.0 790.0 296.0 399.0 435.0 473.0 489.0 492.0

3 · 106 0.6 0.4 2.1 3.2 4.0 6.7 9.4 10.8 1.2 2.0 2.5 4.1 5.8 6.6

3 · 106 10 0.4 26.8 39.3 46.3 59.1 68.1 71.8 16.0 24.6 28.7 36.4 41.9 44.1

3 · 106 100 0.4 177.0 226.0 245.0 270.0 286.0 292.0 108.0 140.0 151.0 166.0 176.0 180.0

TABLE VI: Short LISA, pessimistic WD subtraction (gCLEAN, 3yr), volume-inc-averaged: S/N =

(1/2
∫

(S/N)3 d cos ι)1/3. All values are for β = 0, λ = 0. Effect of position-in-the-sky averaging is

±10%.

retrograde orbit are 1.8 × 10−11 and 7.1 × 10−12. Over three years, the total change in ι is

less than 10−3 radians, so the constant inclination angle approximation should be valid.

The fluxes in Table VII are in good agreement, particularly the prograde fluxes. The

kludged and Teukolsky fluxes are consistently close over the whole inspiral parameter space,

and rarely differ by more than 10% [12]. The retrograde fluxes differ by ≈ 10− 15% in this

example, but this inspiral is somewhat exceptional as it spends a long time in the strong

field region near the central black hole.

To estimate how well the kludge waveforms predict the signal to noise, we must compare
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ι Time to plunge Kludge d(r/M)/dt (s−1) Teukolsky d(r/M)/dt (s−1) Percentage difference

1 week −1.72 × 10−7 −1.81 × 10−7 4.6

1 month −8.03 × 10−8 −8.26 × 10−8 2.8

π
4

3 months −4.43 × 10−8 −4.48 × 10−8 1.1

1 year −2.00 × 10−8 −1.98 × 10−8 −0.8

3 years −1.01 × 10−8 −9.93 × 10−9 −1.7

1 week −9.92 × 10−8 −1.18 × 10−7 16.

1 month −4.70 × 10−8 −5.53 × 10−8 15.

3π
4

3 months −4.43 × 10−8 −3.10 × 10−8 14.

1 year −1.28 × 10−8 −1.45 × 10−8 12.

3 years −6.98 × 10−9 −7.68 × 10−9 9.0

TABLE VII: Comparison of inspiral rates between kludged inspirals and Teukolsky based inspirals.

the waveform amplitude. For a source at 1Gpc we compute the squared amplitude of the

plus and cross gravitational wave polarisations, weighted by the LISA noise, i.e.,

|X|2 = 4<
[

∫

X̃∗(f) X̃(f)

Sh(f)
df

]

(30)

In this Sh denotes the LISA noise spectral density, as defined earlier. This amplitude measure

was computed using a one day pure geodesic waveform segment at each of the points along

the inspiral. The calculation was repeated for two different orientations of the source - i = 0

(source viewed from the pole) and i = π/2 (source viewed from the equatorial plane). These

results are summarised in Table VIII.

The amplitudes appear to be in remarkably good agreement. Close to plunge, the kludge

waveform somewhat underpredicts the amplitude as viewed from the equator, but appears

to get the amplitude as seen from the pole quite accurately. Earlier in the prograde inspiral,

the kludge waveform slightly overpredicts the amplitude but the difference is only a few

per cent. This suggests that the kludge waveforms do a remarkable job of reproducing the

Teukolsky results. However, although the amplitude appears to be similar, the spectral

decomposition of the waveforms is quite different. Figure 4 shows the power (h̃∗+h̃+ + h̃∗xh̃x)

of the two waveforms as a function of frequency, as viewed from the pole and equator.

Figure 4 illustrates that the kludged waveforms contain only a few of the frequency

harmonics seen in the Teukolsky waveform. However, the dominant contribution to the
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ι Time to plunge Inclination Kludge |h+|2 Teukolsky |h+|2 Kludge |hx|2 Teukolsky |hx|2

1 week 0. 1.60 1.58 1.60 1.58

π
2

0.61 0.75 0.79 0.87

π
4

1 month 0. 1.48 1.45 1.48 1.45

π
2

0.57 0.67 0.74 0.77

1 year 0. 0.97 0.95 0.97 0.95

π
2

0.40 0.40 0.51 0.47

3 years 0. 0.61 0.60 0.61 0.60

π
2

0.25 0.25 0.34 0.30

1 month 0. 0.18 0.20 0.18 0.20

π
2

0.12 0.15 0.17 0.18

3π
4

1 year 0. 0.12 0.13 0.12 0.13

π
2

0.081 0.096 0.11 0.12

3 years 0. 0.078 0.082 0.078 0.082

π
2

0.052 0.063 0.071 0.080

TABLE VIII: Comparison of waveform amplitudes between kludged inspirals and Teukolsky based inspirals.

The amplitude |X |2 is computed using expression (30).

signal comes from the quadrupole component, which is included in the kludged waveforms.

In fact, the kludge waveform over-estimates the power in the quadrupole harmonics, and

this somewhat compensates for the harmonics that it misses. The kludge does best for

sources seen from the pole, since the quadrupole component is even more dominant in that

direction. These results suggest that while the kludged waveforms would do quite badly

(in this strong field regime) at matching a real inspiral waveform, the signal to noises that

we are estimating using them are reasonably accurate. This particular example is perhaps

unusually favourable, as the majority of the emission is at frequencies over the flat part of

the sensitivity curve. For higher mass central black holes, the quadrupole peak would be

pushed into the white dwarf noise, and the kludge would then underestimate the signal to

noise. The discrepancy between the kludge and the Teukolsky results also decreases as the

radius of the orbit is increased. Figure 5 is the equivalent of Figure 4, but for waveforms

that are three years from plunge. In this example, the particle is still very close to the black

21



1e-50

1e-48

1e-46

1e-44

1e-42

1e-40

1e-38

1e-36

0.001 0.01 0.1

|h
|^

2

f (Hz)

Waveform comparison - 1wk to plunge, i = 0, prograde.

Teukolsky waveform
Kludge waveform

Sh(f)

1e-52

1e-50

1e-48

1e-46

1e-44

1e-42

1e-40

1e-38

1e-36

0.001 0.01 0.1

|h
|^

2

f (Hz)

Waveform comparison - 1wk to plunge, i = pi/2, prograde.

Teukolsky waveform
Kludge waveform

Sh(f)

FIG. 4: Frequency spectra of kludged (green) and Teukolsky (red) waveforms, for a polar (top) and equato-

rial (bottom) viewing angle. Waveforms are generated from the instantaneous geodesic trajectory one week

from plunge. The blue curve is the LISA noise spectral density, Sh(f).

hole (r = 5.8M) at that time, but the amplitude of the higher harmonics is already being

suppressed by an order of magnitude compared to the central quadrupole peak.
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FIG. 5: As for Figure 4, but for waveforms three years from plunge.
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VI. SEARCH STRATEGIES, TEMPLATE COUNTS, AND DETECTION

THRESHOLDS

A. Basic Search Strategy

Even ignoring the spin and internal structure of the secondary body, it takes 14 param-

eters to characterize completely an inspiral orbit. These are:

• 3 constants defining the source location: normally taken to be ecliptic latitude β,

ecliptic longitude λ, and distance d.

• 2 constants defining the orientation of the supermassive black hole’s spin (i.e. the

equatorial plane of the source system): for instance, its inclination i to the line of sight,

and the angle ψ that its projected spin axis makes with a north-pointing meridian ray

in the plane of the sky.

• 3 constant parameters of the system: the component masses M and m, and the

magnitude of the primary’s spin S.

• 6 phase-space parameters of the secondary body at some specified time t0. For orbits in

Kerr, three of these are “adiabatic” constants, which change gradually due to radiation

reaction: for instance, the orbital periapse r0, eccentricity e0, and inclination ι0 to the

equatorial plane of the primary (or any other three parameters constructed from these).

The other three are dynamical angle variables that change rapidly with the choice of

t0: for instance, the anomaly, apsidal precession, and nodical precession angles, all of

which vary dynamically in the Kerr geometry even for test particles.

The data analysis task is simplified by the fact that only 8 of these parameters define the

intrinsic radiation pattern in the source frame: the three constants of the system, the three

“adiabatic” constants of the orbit, and two of the dynamical variables of the orbiting body.

The remaining parameters are extrinsic: they affect only the projection of this radiation

pattern onto the detector. The relevance of this distinction, as pointed out by Buonanno,

Chen, & Vallisneri(2003), is that extrinsic parameters can be searched over cheaply, while

intrinsic parameters are relatively expensive to search over. A quadrupolar gravitational

wave can be decomposed into a linear combination of 5 orthonormal waveforms hi(λI ; t)
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that depend on intrinsic parameters λI , with constant amplitudes Ai(λE) that depend on

the extrinsic parameters λE. For such a waveform, the optimal matched filter statistic ρ2 can

be obtained simply by summing the squares of the overlaps between the template waveforms

hi(λi; t) and the data x(t):

ρ2(λI) =
5
∑

i=1

〈hi(λI), x〉2 , (31)

where

〈hi(λI), x〉 = 4

[

∫ ∞

0

h̃∗i (λi; f)x̃(f)

Sx(f)
df

]

, (32)

˜ denotes the Fourier transform, ∗ denotes complex conjugation, and Sx(f) is the power

spectral density of the noise in x. Actually, since LISA’s output can be (approximately)

represented as two synthesized Michelsons at 45◦ to one another, we have two data streams

x1 and x2, and our optimal statistic is:

ρ2(λI) =
5
∑

i=1

2
∑

j=1

〈hi(λI), xj〉2 , (33)

A second simplification we can make is to fix one of the “adiabatic” constants of our

waveforms, say r0, to some canonical value, and instead parameterize our waveforms by the

time offset t0 at which it passes through that value. The advantage of this is that time

offsets can be included in the frequency-domain form of a template with a simple phase

factor e2πift0 , turning Eq. (32) into an inverse Fourier transform: the parameter t0 (proxy

for r0) can be searched cheaply using fast Fourier transforms.

1. Semicoherent method

Even with these simplifications, it would exceed reasonable computational requirements

to search the remaining 7 parameters with enough precision to maintain phase coherence

over the full signal duration or mission lifetime. The solution is to break the data up into

more manageable stretches and filter these separately. This data can then be recombined to

recover much of the original signal-to-noise. What makes the technique semi -coherent is that

some of the more rapidly-varying parameters are ignored when combining the stretches. This

raises the detection threshold, but it also vastly reduces the precision at which one needs to

sample the remaining parameters. (An analogy with radio pulsar searches is perhaps useful

here. In stacked searches, one does not require the waveform phase to remain coherent from
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stack to stack. Similary, in our semi-coherent LISA search, we will not require the three

dynamical phase angles to remain coherent from segment to segment.)

One such approach is to divide the template waveforms into stretches of length T , and

to overlap them against the LISA data. The shorter T is, the less precise the template

parameters need to be to maintain a match with a putative signal, and the coarser we

can sample the parameter space. We then explicitly maximize over the remaining two

dynamically-varying angular parameters (these are roughly the mean anomaly and perihelion

direction; the third is actually an extrinsic parameter and so was searched implicitly in the

construction of the ρ2 statistic), giving a filter output that is a function of the remaining 5

parameters ~Λk (plus time offsets tk) for each interval T labeled by k = 1, . . . , N . A given set

of overall signal parameters (~Λ, t0) will then define a trajectory through the parameters of

subsequent intervals, as the “adiabatic” parameters slowly evolve. To recover an imbedded

signal, we select a set of overall signal parameters, and sum the filter output along the

specified trajectory. (We note that the overall parameters will need to be selected from a

finer sample than the parameters on each interval, in order to specify a trajectory uniquely.)

If the parameters correspond to an actual signal in the data, then its contribution will grow

linearly with the number of intervals, while the standard deviation of the noise will grow as

the square root. This is discussed further in Sec. VIC.

This is only one of several possible semicoherent search methods. One possible change

is to divide the templates into stretches not of constant time intervals T , but of constant

intervals in periapse r0, or constant intervals in the fundamental orbital frequency, or even

constant increments in integrated signal-to-noise. Another change is to add a pre-threshold

between the maximization over dynamical parameters and the summing along trajectories:

points along the trajectory will be marginally more likely to exceed the threshold, so a well-

chosen threshold can act as a kind of contrast enhancement while simultaneously paring

down the data requirements of subsequent operations. It will probably take considerable

work to fully optimize the search.

B. Template Counts for Coherent Integrations

Here we discuss the computational cost of the first stage of the hierarchical search:

matched-filtered searches for short segments of capture waveforms in the LISA data. We
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first briefly describe the formalism for calculating this.

1. formalism

Consider the 13-dim space of normalized waveforms hα(t) (normalized so that 〈h|h〉 = 1).

The natural metric on this space is gab = 1
2
〈∂ah|∂bh〉. We want to place a grid on this param-

eter space so that the average overlap of any waveform with the nearest template waveform

(i.e., the nearest gridpoint) is A. (A is a number that parametrizes the “coarseness” of

the first-stage grid; we’ll eventually want to find the most efficient value, but for now we

imagine it is ∼ 0.8− 0.9.) The total number of template gridpoints this requires (assuming

a hypercubic grid) is:

Ntemp ≈ (−12 lnA)−N/2NN/2

∫ √
Γ dλ1...dλN , (34)

where N is the dimension of the (normalized) parameter space (here N = 13).

Actually, for our purposes Eq. (34) must be modified in two ways. First, since the

detection threshold will be set in large part by the computational cost of the search, we

want to distinguish between the extrinsic parameters, which are “cheap” to search over, and

the intrinsic ones. The number of intrinsic-parameter gridpoints to be searched over is

Nint.temp = (−12 lnA)−N̂/2N̂ N̂/2

∫ √
γ dλ1...dλN̂ . (35)

where γab is average (over extrinsic paramters) of the (orthogonal) projection of Γab onto

the N̂(= 7)-dim subspace of intrinsic parameters.

The second modification occurs because in practice γab usually has one extremely small

eigenvalue, with corresponding eigenvector pointing mostly in the Φ0 direction (Φ0 is the

orbital phase at t0). That is, the parameter space is extremely “thin” in this direction,

in which case the volume integral undercounts the required number of grid points. To

account for this, we replace the nearly-zero eigenvalue(s) by one. We denote the modified

determinant as
√
γ̂.

Recall that here we are counting not entire, multi-year waveforms, but waveforms seg-

ments. To specify a segment, we need to specify not only the physical parameters of the full

waveform, but also the length T of the segment and where the segment lies within the full

waveform. The latter is parametrized by the radial orbital frequency ν0 at the middle of the

segment.

27



2. Template density

We have not yet had time to a full survey of
√
γ̂ on the intrinsic space, but we have

done some initial exploration of its dependence on the parameters. We find that
√
γ̂ has

only weak dependence on S/M 2, cosλ and γ̃0, and has roughly the following scaling with

the other physical parameters:

√

γ̂ ≈ 1.37 · 106 × (T/3 weeks)4.3(ν0/1 mHz)7.7(µ/10M�)1(M/106M�)3.1(e0/0.25)1.4. (36)

The pre-factor here corresponds to including both data channels (with the response of only

a single 2-arm detector, the pre-factor drops by a factor ∼ 3). This empirical approximate

formula applies at integration times between ∼ 1 week and ∼ 4 weeks, in which range γ̂

has dimension N̂ = 6 over most parameter space. We obtained this scaling formula by

sampling parameter space around a single “central” point (with ν0 = 0.9 mHz, µ = 10M�,

M = 106M�, S/M2 = 0.8, cos(λ) = 0.5, e0 = 0.25). However, we also performed a limited

Monte-Carlo survey over the entire parameter space, which suggests there are no “surprising”

areas with densities that may violate significantly our scaling formula.

3. template count

To implement Eq. (36) in Eq. (35), we consider separately 20 different classes of sources,

sorted by their M and µ (see the table below). Each class spans ∆ lnM = 1 and ∆ lnµ = 1.

For each class, we consider sources with all possible e0, S, cos(λ), and γ̃0. The volume

integral in Eq. (35) over these 4 parameters is

∫ 0.4

0
(e0/0.25)1.4de0

∫ 1

0
d(S/M2)

∫ 1

−1
d(cosλ)

∫ 2π

0
dγ̃0 = 0.32 × 1 × 2 × 2π = 4. (37)

For a given data stretch with duration T and central frequency ν0, and a given source class

with Mmin < M < Mmax and µmin < µ < µmax, Eq. (35) becomes

Nint.temp = 1.2 · 109 × (−12 lnA)−3(T/3 week)4.3(ν0/1 mHz)7.7

×
∫ µmax

µmin

(µ/10M�)(dµ/µ)
∫ Mmax

Mmin

(M/106M�)3.1(dM/M), (38)

where we specified N̂ = 6. Table I gives Nint.temp for the various source classes, for T = 3

weeks, ν0 = 1 mHz, and A = 0.9. With A = 0.8, all entries are smaller by a factor ∼ 10.
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1.0e5 < M < 2.7e5 2.7e5 < M < 7.4e5 7.4e5 < M < 2.0e6 2.0e6 < M < 5.5e6

0.5 < µ < 1.3 2.5 · 105 5.8 · 106 1.3 · 108 2.9 · 109

1.3 < µ < 3.7 7.6 · 105 1.7 · 107 3.8 · 108 8.7 · 109

3.7 < µ < 10 2.0 · 106 4.6 · 107 1.0 · 109 2.3 · 1010

10 < µ < 27 5.4 · 106 1.2 · 108 2.7 · 109 6.2 · 1010

27 < µ < 74 1.5 · 107 3.4 · 108 7.4 · 109 1.7 · 1011

TABLE IX: Number of templates required for 3 week long integration centered at ν0 = 1 mHz, for various

CO and MBH mass ranges, and with both data channels. All masses are in M�. The average match has

been set here to 0.9. With A = 0.8, one need only divide all entries by ∼ 10. To re-scale for other T and

ν0, use the approximated scaling factors in Eq. (36)

4. Maximal length of time segment

We would prefer to do optimal filtering on segments that are as long as possible. What

can we afford? Imagine that our computer in 2013 has effective power of 50 Teraflops, so

that in 2 years running time it can perform ∼ 3× 1021 ops, and that roughly a third of this

power is expended on the coherent integration stage of the search. Imagine that we have

τ ∼ 2yr’s worth of data, and that the segments we’ll use in the coherent integration have

length T . The cost of the coherent stage is then

∼ 10Nint.temp(τ/T )[3fmaxτ log2(fmaxτ)] (39)

where the initial factor of 10 comes from the fact that there are 5 independent components

of the quadrupolar waveform and 2 measured polarizations; fmax ∼ 3× 10−2Hz is an upper-

frequency cut-off we’ll impose at the first stage to limit computational cost; and the factor

[3fmaxτ log2(fmaxτ)] comes from the search (using FFTs) over all time-translations of the

template. Then we can afford for Nint.temp to be ∼ 1012(T/τ) ∼ 1010:

maximal # of templates in one coherent step ∼ 1010. (40)

The table above shows that this allows for ∼ 3-week segments for all populations of COs

and MBHs, except BHs captured by MBHs heavier than ∼ 2 · 106M�. For the latter we can

only have T ∼ 10− 14 days (at A = 0.9). In estimating event rates we will assume that we

can use three week long stacks in the ’optimistic’ case, but will assume only two week long

stacks for the ’pessimistic’ case.
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C. Detection Thresholds

In the presence of Gaussian noise only, the ρ2 statistic defined in Eq. (33) is distributed as

a χ2 with 10 degrees of freedom: it has a mean of 10 and a standard deviation of 2
√

5 ≈ 4.47.

The statistic Pk is the maximum of ρ2 along some slice through parameter space (correspond-

ing to the most rapidly-changing variables), with varying degrees of correlation along this

slice: the resulting distribution is analytically intractable, but relatively straightforward to

estimate using Monte-Carlo simulations. We characterize the distribution by its mean µk

and standard deviation σk, and find that, over a broad range of signal parameters, µk ∼ 18

and σk ∼ 4.5. While these statistics may not be normally-distributed, their sum along a tra-

jectory P =
∑N

k=1 Pk will tend towards a normal distribution (by the central limit theorem),

with a mean µ = Nµk and standard deviation σ =
√
Nσk.

Our detection threshold can then be characterized by the normal Z-score, Z = (P−µ)/σ,

that must be achieved for a signal to qualify as a detectable event (or event candidate).

Now suppose we want our entire search to have a false alarm probability of 1% from noise

alone. The number of independent trajectories that we search is difficult to compute exactly,

but will certainly exceed the 1010 templates over ~Λk computed in Sec. VIB. For a 3-year

observation, each of these trajectories has a number of independent time offsets t0 of order

3yr × 1mHz ∼ 105. So our false alarm probability per trajectory per time offset should not

exceed 10−17, for a Z-score of 8.8. Changing any of the assumptions by an order of magnitude

changes the Z-score by less than 0.3 — when you’re this far into the tail of the distribution,

the threshold is relatively insensitive to large variations in false alarm probability. Even

if one assumed a hierarchical search strategy, where millions of candidate events could be

detected and then winnowed out by subsequent analyses, the threshold Z-score would only

go down to 7. For definitiveness, we will assume that a “typical” Z-score for a search will

be around 8.

The next question is: How strong must a signal be to exceed this threshold? Signal

strengths are usually measured in terms of their intrinsic signal-to-noise ratio SNR =
√

〈s, s〉
over the entire observation, with the inner product defined in Eq. (32). However, the signal

measured on each stretch of data is reduced by two factors. First, each stretch is only 1/N

of the total observation, so 〈s, s〉 is reduced by 1/N . Second, the coarseness of our template

bank introduces a factor M < 1, representing how closely the signal matches the nearest
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template in the bank. (This includes not only the factor A discussed in Sec. VIB, but

other reduction factors due to the discreteness of our method, such as finite time sampling

rate.) These two factors tend to be complementary: if one chooses a bank with higher

M, the templates are placed more densely, so computational resources limit us to shorter

data stretches and hence higher N . Our calculations of template densities have assumed an

overall match factor of M ∼ 0.8 − 0.9.

The presence of a signal will increase the expectation value of ρ2 for the nearest template

from 10 to 10+(M/N)〈s, s〉. Assuming that the maximization over the two dynamic angles

will usually arrive at the correct values corresponding to the imbedded signal, then the

corresponding Pk’s will have a similar value, and their sum P will have N times that value.

Setting this equal to the value required to exceed our threshold Z-score Zthresh, we obtain

the threshold intrinsic signal-to-noise ratio:

SNRthresh =

√

√

√

√

N

M

(

µk − 10 + Zthresh

σk√
N

)

. (41)

The LHS is the (optimal, matched-filtering) signal-to-noise ratio
√

〈s, s〉, coming from both

synthetic Michelsons, that a signal must have in order to have a good chance of being

detected, using our method. The variation due to noise is fairly narrow at this level, so we

can assume to good approximation that signals will be detected if and only if they exceed

this threshold.

For a typical case of a 3-year observation divided into 3-week stretches, assuming an

overall match factor of M = 0.8 and Zthresh = 8, we get SNRthresh = 29. Changing the

threshold Z-score by ±1 changes this number by only ±0.7.

Note that even with infinite computing power (which would allow an optimal search), an

SNR of ∼ 14 would be required to insure a < 1% false alarm probability (owing to the vast

number of templates effectively searched over). Thus one could say that computing-power

limitations reduce LISA’s reach by a factor ∼ 2, for these sources.

VII. SUMMARY OF DETECTION RATES

The final event rate that can be detected by LISA can be computed from the detection

signal to noise ratios Tables III, IV, V and VI, and the EMRI rates per unit volume R in

table II. Since for a source at distance D, SNR(D) ∝ D−1, the number of detected mergers
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in time T is, for D � 3.5Gpc (corresponding to z = 1, by when the universe is no longer

Euclidean and evolution is important)

Ndet = (4π/3)D3RT
[

SNR(D)

thresh

]3

(42)

which is independent of the fiducial D (here chosen to be 1 Gpc); thresh is the threshold,

set by the requirement of a false alarm rate less than 10−4 (for coherent integration, Pfalse ∼
Ntemplates exp[−(SNR)2/2]).

We consider two cases, one optimistic and one pessimistic:

• For the optimistic case, we assume 5 years of LISA data, using the optimal AET signal

combination, with the optimistic confusion background estimates, and assume that we

can integrate 3-week coherent stretches of data (giving SNRthresh ∼ 36).

• For the pessimistic case, we assume 3 years of LISA data, using only the X signal,

with the pessimistic confusion background estimates, and assume that we can integrate

2-week coherent stretches of data (giving SNRthresh ∼ 34).

For each case we compute the total number of events in the 5- or 3-year mission, for each

of the 17 fiducial sources in the S/N tables, for both standard and short-arm LISA designs

assuming that the universe is flat Minkowski space. We then average the numbers from

e = 0.4 and e = 0.25 because we expect comparable contributions to the EMRI rates from

circular (large initial peribothron) and eccentric (small initial peribothron). The resulting

source numbers are given in Table X When SNR(1Gpc) > 120 (i.e. Dmax > 3.5Gpc), the flat

Minkowski space estimate of equation 42 is not to be trusted: the volume of space increases

only as ∼ D, not D3, and redshifting of frequency and source evolution are important effects,

not considered here. Instead in these cases (marked with a * in the table) we have instead

entered in the table the crude lower limit to the total number of events within z < 1, all of

which LISA can detect.

Ndet = Vc(z < 1)RT (43)

The comoving volume Vc(z < 1) = 199Gpc3.
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M• m LISA Short LISA

Optimistic Pessimistic Optimistic Pessimistic

300 000 0.6 8 0.7 14 1

300 000 10 739 89 902 115

300 000 100 1* 1* 1* 1*

1 000 000 0.6 94 9 80 7

1 000 000 10 1000* 800 1000* 502

1 000 000 100 1* 1* 1* 1*

3 000 000 0.6 67 2 11 0.3

3 000 000 10 1700* 134 816 25

3 000 000 100 2* 1* 2* 1

TABLE X: Columns 3-6 give the number of EMRI events LISA can see for merger of body of

mass m (column 2) into supermassive black hole of mass M• (column 1). Columns 3-4 are for the

normal 5× 106km baseline. Columns 5-6 are for a 1.6× 106km baseline. Optimistic uses all 3 TDI

variables for 5 years, with ideal white dwarf background removal and assuming 3 week stretches for

the coherent search. Pessimistic uses only a single pair of arms for 3 years, with current gCLEAN

white dwarf removal and assuming 2 week coherent stretches. Entries marked with a * are z < 1

lower limits computed from equation 43, since LISA can detect all sources out to z � 1, and

evolution is unknown. All other entries computed from the Euclidean equation 42, since LISA

cannot see the sources to cosmological distances.

VIII. DISCUSSION AND RECOMMENDATIONS

We conclude that there is no strong reason to push for a shorter LISA baseline. With the

fiducial numbers presented here, LISA should detect ∼ 103 EMRI events, mainly stellar mass

black hole inspirals, even with the loss of one arm. Only tens of white dwarf inspirals will

be seen, and the Pop III 100M� inspiral numbers are to sensitive to cosmological evolution

and redshift effects for the current calculations to give reliable numbers, beyond the fact

that one could be seen at z < 1. With conservative rates (1/100 the fiducial ones for white

dwarfs, and 1/10 the fiducial ones for black holes), the detection of even a single white dwarf

event becomes marginal, but the stellar mass black hole signals are robust.
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