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Modeling efforts at GSFC and JPL are aimed at producing a detailed time-domain simulation
of LISA. The simulated time series are intended to be useful in developing/validating vetos and
in testing signal-processing procedures to be used on the actual data. LISA will use Time Delay
Interferometry (TDI) to cancel the otherwise overwhelming laser phase noise. Here we describe
the current version of a software package which produces synthetic LISA time series. This package
simulates the gravitational-wave (GW) and noise responses of LISA through the TDI transfer func-
tions. It does this for all the TDI combinations: unequal arm Michelson (X, Y, Z), Sagnac (α, β, γ),
beacon (P,Q,R), monitor (E,F,G), relay (U,V,W), and symmetrical Sagnac (ζ). The GW signal
response includes the amplitude and phase modulation of signals due to the changing geometry as
the array orbits the sun.

I. INTRODUCTION

There is an extensive effort to produce a high-fidelity model of LISA [1]. One important aspect of the mission
is the overwhelmingly large laser noise which must be canceled (by about 9 orders of magnitude) so that LISA can
reach its design sensitivity to gravitational waves (GWs). The procedure for laser noise cancellation is Time Delay
Interferometry [2–12], TDI. This whitepaper describes the current version of a software package that emulates TDI
and produces simulated time series of the GW signal and noises.

II. TIME DELAY INTERFEROMETRY

A. Cancellation of Raw Laser Noise

LISA seeks to observe GW signals with amplitudes that are orders of magnitude smaller than the laser noises in
the array. In conventional equal-arm Michelson interferometers, the signals in the two arms are differenced on a
photodetector; the laser noise is common to the two arms and it cancels, so sensitivity is dominated by the secondary
noises and the signals. LISA will necessarily have unequal arms (by ' 2%); simple differencing of the arms fails, by
orders of magnitude, to provide the ' 180dB of laser noise suppression required to reach LISA’s design sensitivity.

TDI [2–12] views LISA in a symmetrical way, not only as a Michelson-type interferometer. The basic idea is
to record appropriate data throughout the array and combine them with suitable time shifts to cancel all laser
noises. Phase locking of the lasers in the array can be implemented, but is not required. Many laser-noise–free TDI
combinations (not just the unequal-arm Michelson) can be formed simultaneously. For each TDI combination there
is a different coupling to GWs and secondary noises. These multiple TDI combinations provide architectural freedom
and can be useful for on-orbit instrumental noise verification, for separating the confusion-limited GW background
from instrumental noise, and for contingency in the case of loss of subsystems.

For background information on TDI, see Refs. [2–12]. A general tutorial on “original TDI” is given in Ref. [10].
Reference [2] discusses the Michelson configuration in particular, and it shows why alternate laser-canceling schemes
based on Fourier techniques are not practical for LISA. As discussed below, more recent TDI developments can be
found in Refs. [6–8, 15, 17].

B. TDI in Various Approximations

TDI has been developed in increasing complexity:

1. Original TDI. Original TDI cancels laser noise in the case of unequal arms, a rigid LISA array, and Li = L
′

i

(where Li and L
′

i are the light times in the arms opposite spacecraft i, when the laser propagates in the
counterclockwise and clockwise directions, respectively; see Fig. 1). Original TDI considers six lasers, six optical
benches, 12 data time series (six fractional-frequency-fluctuation Doppler measurements between optical-bench
pairs on different spacecraft; six fractional-frequency-fluctuation Doppler measurements between optical benches
on the same spacecraft) [2–4, 9, 11, 12, 19].
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FIG. 1: Schematic LISA configuration. Each spacecraft is equidistant from the point O, in the plane of the spacecraft. Unit
vectors n̂i point between spacecraft pairs with the indicated orientation. At each vertex spacecraft there are two optical
benches (denoted 1, 1∗, etc.), as indicated. The armlengths Li, measured in the counterclockwise directions, are indicated.
(For generalized TDI [7, 8, 15, 17] − treated in subsequent versions of our simulations − the armlengths in the clockwise

directions are L
′

i.)

2. Modified TDI. Modified TDI cancels laser noise in the case of unequal arms, rigid array, and Li 6= L
′

i (due to
aberration) [6–8]. Modified TDI is a straightforward extension of Original TDI, which will be incorporated in
the next version of the simulation.

3. Second-Generation TDI. Second-generation TDI cancels laser noise for unequal arms, Li 6= L
′

i, and a shearing
LISA array (i.e., the time delays are themselves functions of time) [7, 8, 15, 17]. Second-generation TDI will be
treated in a future version of the simulation code.

C. Notation and Conventions

In this version of the simulation, we adopt the original TDI notation and conventions (see, e.g., Refs. [4, 10]), briefly
reviewed below. Figure 1 shows the overall geometry of the LISA detector. The spacecraft are labeled 1, 2, 3, and the
distances between pairs of spacecraft are denoted as L1, L2, L3, with Li being opposite spacecraft i. The unit vectors
between the spacecraft are denoted as n̂i, and are oriented as indicated in Figure 1. We similarly index the Doppler
data to be analyzed: y31 is the fractional1 Doppler series derived from reception at spacecraft 1 with transmission
from spacecraft 2. Similarly, y21 is the Doppler time series derived from reception at spacecraft 1 with transmission
at spacecraft 3. The other four y variables are interpreted by cyclic permutation of the indices: 1 → 2 → 3 → 1. We
also adopt a useful notation for delayed data streams: y31,2 = y31(t − L2), y31,23 = y31(t − L2 − L3) = y31,32, etc.
(We take c = 1 throughout this paper). Six more Doppler series result from laser beams exchanged between adjacent
optical benches; these are similarly indexed as zij (i,j = 1, 2, 3).

The proof-mass-plus-optical-bench assemblies for LISA spacecraft number 1 are shown schematically in Fig.2. We
take the left-hand optical bench to be bench number 1, while the right-hand bench is 1∗. The photodetectors that
generate the data y21, y31, z21, and z31 at spacecraft 1 are shown. The fractional frequency fluctuations of the laser
on optical bench 1 is C1(t); on optical bench 1∗ it is C∗

1 (t); these are independent (the lasers need not be locked). We
extend the cyclic notation of Ref. [3] in that at vertex i (i = 1, 2, 3) the random velocities of the two proof masses are
respectively denoted ~vi(t) and ~v∗i (t), and the random velocities (perhaps several orders of magnitude greater) of their

optical benches are correspondingly denoted ~Vi(t) and ~V ∗

i (t). (Thus, Ref. [3] considered the case ~Vi = ~vi = ~V ∗

i = ~v∗i .)
Note that the analysis of this paper does not assume that pairs of optical benches are rigidly connected; that is,

in general ~Vi 6= ~V ∗

i . The present LISA design shows optical fibers transmitting signals between adjacent benches.
We ignore time-delay effects for these signals, and we simply denote by ηi(t) the frequency shifts upon transmission

through the fibers (ultimately due to a component of the relative bench motions, ~Vi − ~V ∗

i ). The η(t) frequency shift
within a given spacecraft is the same for both local beams, positive if the benches are approaching and negative if
they are separating.

1 Or, equivalently, normalized by center frequency – we omit this qualifier in the rest of this paper.
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The four photodetector readouts at vertex 1, including gravitational wave signals and shot noises as in [4], are thus

y21 = C3,2 − n̂2 · ~V3,2 + 2n̂2 · ~v∗1 − n̂2 · ~V ∗

1 − C∗

1 + ygw
21 + yshot

21 (1)

z21 = C1 + 2n̂3 · (~v1 − ~V1) + η1 − C∗

1 (2)

y31 = C∗

2,3 + n̂3 · ~V ∗

2,3 − 2n̂3 · ~v1 + n̂3 · ~V1 − C1 + ygw
31 + yshot

31 (3)

z31 = C∗

1 − 2n̂2 · (~v∗1 − ~V ∗

1 ) + η1 − C1 (4)

Eight other relations, for the readouts at vertices 2 and 3, are given by cyclic permutation of the indices in equations
(1)–(4). The GW signal components in equations (1) and (3) are discussed later in Sec. III. The shot-noise contri-
butions, yshot

ij , due to the low signal-to-noise ratio (SNR) in the links connecting the distant spacecraft, are given in
Ref. [3]. The zij measurements will be made with high SNR, so shot noise is negligible there.

The TDI data combinations that cancel the six laser noises and the noninertial motions of the optical benches
are the unequal arm interferometer (X,Y,Z), Sagnac (α, β, γ), beacon (P,Q,R), monitor (E,F,G), relay (U,V,W), and
symmetrical Sagnac (ζ) [2–4, 10]. In terms of the yij and zij ,

X = y32,322 − y23,233 + y31,22 − y21,33 + y23,2 − y32,3 + y21 − y31

+
1

2
(−z21,2233 + z21,33 + z21,22 − z21)

+
1

2
(+z31,2233 − z31,33 − z31,22 + z31) (5)

α = y21 − y31 + y13,2 − y12,3 + y32,12 − y23,13

−1

2
(z13,2 + z13,13 + z21 + z21,123 + z32,3 + z32,12)

+
1

2
(z23,2 + z23,13 + z31 + z31,123 + z12,3 + z12,12) (6)

P = y32,2 − y23,3 − y12,2 + y13,3 + y12,13 − y13,12 + y23,311 − y32,211

+
1

2
(−z21,23 + z21,1123 + z31,23 − z31,1123)

+
1

2
(−z32,2 + z32,112 + z12,2 − z12,112)

+
1

2
(−z13,3 + z13,113 + z23,3 − z23,113) (7)

E = y12,21 − y13,31 − y12,3 + y13,2 + y31,11 − y21,11 − y31 + y21

−1

2
(z13,2 + z21 + z32,3 − z13,112 + z23,112 − z32,113)

+
1

2
(z23,2 + z31 + z12,3 − z12,113 + z21,11 − z31,11) (8)

U = y21,113 − y21,3 − y12,123 + y13,1 − y13,23 + y32,11 − y32 + y12

−1

2
(z31,3 + z12 + z23,23 + z32,11 + z13,1123 + z21,113)

+
1

2
(z21,3 + z32 + z13,23 + z12,11 + z23,1123 + z31,113) (9)
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FIG. 2: Schematic diagram (adapted from Ref. [14]) of proof-masses-plus-optical-benches for a LISA spacecraft. The left-
hand bench reads out the Doppler signals y31 (from spacecraft 2, bounced off the left proof mass, read out using laser and
photodetector on the left optical bench) and z31 (from the right optical bench, bounced off the right-hand proof mass, redirected
to the left-hand bench, and read out with the laser/photodetector on the left bench). The right hand bench analogously reads
out y21 and z21. The random velocities of the two proof masses and two optical benches are indicated (lower case ~vi for the

proof masses, upper case ~Vi for the optical benches.)

ζ = y32,2 − y23,3 + y13,3 − y31,1 + y21,1 − y12,2

+
1

2
(−z13,21 + z23,12 − z21,23 + z31,23 − z32,13 + z12,13)

+
1

2
(−z32,2 + z12,2 − z13,3 + z23,3 − z21,1 + z31,1) (10)

The transfer functions for GWs and secondary noise sources (optical-path and shot noises) are given in Refs. [3, 10].
Example noise spectra are given in Refs. [4, 5, 10, 20].

III. SIMULATION OF GRAVITATIONAL WAVE SIGNALS

We now show expressions for the GW response of the basic Doppler observables yij(t). In the following, we set
G = c = 1, and we build on the procedures and conventions of Ref. [21].

For simplicity, we start by considering a stationary constellation, at rest with respect to what we shall call the LISA
reference frame. We define the vectors ~pi to give the position of the three spacecraft with respect to the center of the
constellation; a suitable choice for an equilateral configuration is

~pi = `





cos 2π(i− 1)/3
− sin 2π(i− 1)/3

0



 , (11)

with
√

3` = 5 × 106km. We also use the unit vectors n̂i ∝ εijk(~pj − ~pk), which point along the links (n̂1 points from
spacecraft 3 to 2, n̂2 from 1 to 3, n̂3 from 2 to 1); here εslr is the totally antisymmetric 3-D tensor. The lengths of
the links are given in terms of the ~pi by Li = |εijk(~pj − ~pk)|.

At the position ~x in the LISA frame, the spatial part of the transverse–traceless metric perturbation associated
with a plane gravitational wave can be written as

h(t) = h+(t− k̂ · ~x) e+ + h×(t− k̂ · ~x) e× : (12)
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FIG. 3: GW polarizations according to the convention of Eq. (14) with ψ = 0. The heavy (red) lines denote the e+ axes.

here the functions h+(t) and h×(t) express the two polarization components of the wave2, referred to the origin of

the LISA frame; for a GW source at latitude β and longitude λ, the unit propagation vector k̂ is

k̂ ≡ −(cosβ cosλ, cosβ sinλ, sinβ); (13)

last, the two polarization tensors e+ and e× can be defined (without loss of generality) as

e+ ≡ E ·





1 0 0
0 −1 0
0 0 0



 · ET , e× ≡ E ·





0 1 0
1 0 0
0 0 0



 ·ET . (14)

In Eq. (14), the orthogonal matrix E expresses the Euler rotation sequence

E ≡





sinλ cosψ − cosλ sinβ sinψ − sinλ sinψ − cosλ sinβ cosψ − cosλ cosβ
− cosλ cosψ − sinλ sin β sinψ cosλ sinψ − sinλ sinβ cosψ − sinλ cosβ

cosβ sinψ cosβ cosψ − sinβ



 , (15)

where the β and λ terms can be understood as enforcing the transversality of the GW, while ψ = ψ(β, λ) is an
arbitrary polarization angle. For simplicity, we take ψ = 0; the resulting polarization directions are shown in Fig. 3.

Bringing together these ingredients, the response of the yij(t) to a plane gravitational wave is given by [22]

ygw
lr (t) = y(s)lr(t) =

[

1 + εslr k̂ · n̂l

](

Ψl(t− k̂ · ~ps − Ll) − Ψl(t− k̂ · ~pr)
)

, (16)

where

Ψl(t) =
n̂l · h(t) · n̂l

2[1 − (k̂ · n̂l)2]
. (17)

According to the notation outlined in Sec. II C, the index r denotes the receiving spacecraft, the index l the transmission
link, and the (implicit) index s the emitting (sending) spacecraft. The retarded responses used in the TDI combinations

are obtained simply by replacing t in Eq. (16) with the appropriate retarded times. In Eq. (16), the two k̂ · ~p products
correspond to the retardation of the wavefront to the position of the two spacecraft; the further delay Ll corresponds
to the retardation of the wavefront to the emission event (while the reception event occurs at time t); in Eqs. (16),

(17), the k̂ · n̂ products are geometrical projection factors.

2 For instance, for a simple monochromatic binary one can set h+(t) = A(1 + cos2 ι) cos(2πft + φ0), h×(t) = A(2 cos ι) sin(2πft + φ0),
where ι is the inclination angle, f is the GW frequency observed in the LISA frame, φ0 is the initial phase, and A = (2m1m2/d R) is
the amplitude, with m1, m2 the two masses, d the luminosity distance, R the orbital separation.
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source h+ and hx
(functions of t)
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heliocentric frame

ni(t), 
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FIG. 4: Data flow for the signal part of the simulation. See text.

These expressions can be generalized to a moving LISA constellation (in the approximation of slowly moving
spacecraft), by turning the ~pi (and therefore the n̂i) into functions of time. To do this, we refer all vectors to a
heliocentric, ecliptic frame where the guiding center of the LISA constellation moves in the (x, y) plane. A good
approximation to the LISA trajectories, which reproduces both the solar-revolution and cartwheeling motions, but
neglects the eccentricity of the orbits, is given by

~pi(t) = ~o(t) + L(t) · ~pi(0); (18)

here ~o(t) gives the motion of the LISA guiding center,

~o(t) = RLISA ×





cos 2π(t/yr) + η0
sin 2π(t/yr) + η0

0



 , (19)

with RLISA = 1 AU; the orthogonal matrix L(t) expresses the Euler rotation sequence

L(t) ≡





sin η(t) cos ξ(t) − cos η(t) sin ζ sin ξ(t) − sin η(t) sin ξ(t) − cos η(t) sin ζ cos ξ(t) − cos η(t) cos ζ
− cosη(t) cos ξ(t) − sin η(t) sin ζ sin ξ(t) cos η(t) sin ξ(t) − sin η(t) sin ζ cos ξ(t) − sin η(t) cos ζ

cos ζ sin ξ(t) cos ζ cos ξ(t) − sin ζ



 , (20)

with ζ = −π/6, η(t) = 2π(t/yr)+η0, ξ(t) = −2π(t/yr)+ξ0. The offsets η0 and ξ0 are related to the initial position and
alignment of the LISA constellation, and both can be taken to be zero for simplicity. The time-dependent rotation of
the link vectors n̂i in Eq. (17) introduces an amplitude modulation in the responses, generating sidebands at frequency

multiples of 1/yr; the time dependence of the products k̂ · ~p introduces the instantaneous Doppler shifts caused by the
relative motion of the spacecraft with respect to the heliocentric ecliptic frame [to which we now refer the gravitational
perturbation h(t)].

A simple algorithm to generate the TDI observables (X , α, and so on) according to the formalism outlined above
is schematized in Fig. 4, which should be interpreted as a “pull” diagram: the request of a TDI observable at time t
generates several requests (in practice, C++ function calls) for retarded Doppler responses yij(t− . . .); each of these
is assembled using the gravitational perturbation h and the LISA geometry n̂i, ~pi at specific times; the tensor h is

assembled using the (static) source geometry k̂, e+, e×, and the (time-dependent) polarization amplitudes h+ and
h×. This algorithm is currently implemented in the signal part of the JPL LISA simulator (Synthetic LISA), and
it has the advantage of allowing a modular structure whereby the LISA geometry and the wave amplitudes can be
easily replaced with user-written functions that apply to different situations. Figures 5 and 6 show the X spectrum
for a monochromatic binary with frequency f0 = 2 mHz, as produced by the algorithm described above. The X signal
spectra are superimposed to a noise spectrum for X.

IV. SIMULATION OF NOISE

A. Overview

The noise simulation is done in steps. In the first step time series of proof-mass, optical-path, and laser noises
are generated using digital filters, with user-specified spectral levels. The shapes of the proof-mass and optical-path
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FIG. 5: Spectrum of signal in X (green) of a monochromatic binary with f0 = 2 mHz, located at zero ecliptic latitude and
longitude, superimposed on an averaged noise spectrum (red) for X. Both were generated by Synthetic LISA in a year-long run
with sampling time of 16 s. The (power) signal-to-noise ratio was chosen to be large, to emphasize the modulation structure of
the signal (see Fig. 6). A triangle window function was used in the estimation of the spectra.
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FIG. 6: Close up plot of the X spectrum, signal plus one realization of the noise, for the monochromatic binary of Fig. 5 (with
f0 = 2 mHz), located at zero ecliptic latitude and longitude (blue curve), and at ecliptic latitude = π/5, ecliptic longitude
= π/3 (red dashed curve). The modulation structure due to the rotation of LISA’s plane is evident. The spectra include noise,
and they are have been windowed, but not averaged.

spectra are fixed, but the level of each is under user control. From the proof-mass, laser, and optical-path time series,
the observables yij and zij are generated and written to disk. If desired, these are quantized to a user-specified
number of bits, to model (partially) the finite accuracy of the measurement process. Next, TDI is performed, fully
in the time domain, using the definitions of the TDI combinations. The time series of the TDI combinations are
written to disk, for use by other studies. The spectra of the simulated time series are measured at various points
in the process, to verify fidelity of the simulation. The use of intermediate disk files is intended to modularize the



8

generate PM 
and

optical path
time series; then zij

(intraspacecraft
metrology time series)
and yij (s/c to s/c time

series)

intermediate
disc files
with time
series of

observations

zij

yij

laser, PM, opt path
time series

do TDI

disc file
with time
series of  

TDI
combinations

X, E, P, U,
alpha, beta,

zeta, etc.

light times,
noise scaling

factors, number of
measurement

bits,
desired length
of simulation

compute 
spectra 
and plot

quantize
 time

series, if
desired

zij

yij

zij

yij

FIG. 7: Data flow for the noise part of the simulation.

process, allowing, for example, modelers to substitute their own files of simulated data (e.g., to investigate the effect
of different assumptions about subsystems through the TDI process) if desired. The data flow is illustrated in Fig. 7.

B. Generation of Laser, Proof-Mass, and Optical Path Time Series

The simulation starts with the generation of 18 time series: six for each of the laser noises (the Ci and C∗

1 in
Eqs. (1)–(4), six optical-path noises (sum of shot noise, pointing noise, and other optical-path noises) on the six
one-way beams between optical benches on spacecraft pairs, and six proof-mass noise time series. In this version of
the software, the time step is ∆ = 1 second.

Laser Noises : The laser noises are taken to be white, and to have a one-sided (square-root) spectral density of

30 Hz/
√

Hz [13]. The laser noises Ci and C∗

1 are generated as follows. Let n(t) be a white, unit-variance-Gaussian,
discrete-time noise process generated by adding 12 random numbers, uniformly distributed on the interval (−0.5, 0.5).

The laser noises are produced by scaling the n(t), so that the (square-root) frequency spectrum is 30 Hz/
√

Hz. This
converts to a spectrum of ∆f/f0 by squaring and dividing by the square of the optical frequency (' 3 × 1014 Hz).
The six laser noises are generated independently, and are thus statistically independent.

Proof-Mass Noises : The simulated proof mass (PM) noise along the sensitive axis is generated by a digital filter:
xproof mass(t) = αxproof mass(t − ∆) + n(t). The Fourier transform gives the transfer function: x̃proof mass(f)(1 −
αe−2πif∆) = ñ(f). Thus the spectrum of xproof mass will be related to the white spectrum of n(t) by the spectral
transfer function: |1/(1 − α exp(2πif∆))|2. The output is scaled to give the expected PM spectral level in the LISA
band. From Ref. [13], Table 4.2, the acceleration noise spectrum of a single proof mass is 3×10−15 m sec−2 Hz−1/2. To
convert to a spectrum of fractional frequency fluctuations [10], we use the derivative theorem for Fourier transforms,
and note that dividing the velocity spectrum by the speed of light squared gives the power spectrum of fractional
frequency fluctuations: Sproof mass

y = (3× 10−15 m sec−2 Hz−1/2)2/(4π2f2c2) = 2.5× 10−48[f/1Hz]
−2

Hz−1. We take
α = 0.9999,∆ = 1 and scale the output of the digital filter (in the nominal case—variations in level are under user
control) to have the one-sided spectrum given above. Figure 8 shows the one-sided power spectrum of the proof mass

noise thus generated, compared to the desired spectrum 2.5 × 10−48[f/1Hz]
−2

Hz−1 (dashed line).
Optical-Path Noise: The shot-noise spectrum for an individual laser link is given in the Pre-Phase A Study [13],

Table 4.2. Here we combine the shot noise and the beam-pointing noise into an aggregate optical-path noise having
(square root) spectrum 20×10−12 m Hz−1/2. We assume that this aggregate optical-path noise has the same transfer
function as pure shot noise. Again using the derivative theorem for Fourier transforms, 20× 10−12 m Hz−1/2 converts
to a spectrum of velocity: (20 × 10−12 m Hz−1/2)2 × 4π2f2. Dividing by the speed of light squared gives the power
spectrum of fractional frequency fluctuations associated with optical path noise: Soptical path

y = 1.8× 10−37 (f/1 Hz)2

Hz−1. Overall spectral level is under user control if a non-standard optical-path noise is desired. The f2 dependence
makes an approximate implementation with digital filters easy: xopt path(t) = n(t)− n(t−∆), scaled to get the right
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FIG. 8: Spectrum of one proof mass, computed from 225 seconds of simulated data according to the digital filter of the text.
Solid line = spectrum of simulated data; dotted line = model spectrum.

spectrum in the low-frequency region where LISA will be most sensitive3. To account for loss in the arm lengths, the
overall optical-path rms noise is scaled by Li/(16.67s) on each of the links.

C. Generation and Verification of Noise Time Series

From Eqs. (1)–(4), we take the optical fiber noise to be zero and the bench motions to be zero (the latter, like laser
noise, are algebraically canceled by TDI but could be included in future versions to explore effects of measurement
and quantization noise). Given the 18 time series (six laser noise, six proof mass noises pmi and pm∗

i , and six optical

path noises yopt path
ij ), the yij , zij are generated from

y21 = C3,2 + 2pm∗

1 − C∗

1 + yopt path
21 (21)

z21 = C1 + 2pm1 − C∗

1 (22)

y31 = C∗

2,3 − 2pm1 − C1 + yopt path
31 (23)

3 The first-difference filter has a spectral transfer function proportional to sin2(πf∆), so is only accurately proportional to f2 at low-
frequencies; near the Nyquist frequency, 0.5 Hz, an error will be incurred. This is negligible for current use of the simulator. However, if
desired, the code could be straightforwardly modified to extend the f2 dependence to 0.5 Hz by, e.g., differencing a time series sampled
at 10 Hz, low pass filtering at 0.5 Hz (to avoid aliasing), and then decimating to ∆ = 1 sec. For present purposes, the procedure
described in the text is adequate.
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FIG. 9: Spectrum of noise on optical path, computed from 225 seconds of simulated data according to the difference equation
in the text. Solid line = spectrum of simulated data; dotted line = model spectrum.

z31 = C∗

1 − 2pm∗

1 − C1 (24)

Eight other relations, for the readouts at vertices 2 and 3, are given by cyclic permutation of the indices. The
computations are done in double precision. These 12 time series are written to disk as intermediate files.

D. Measurement Error

Measurement error, if it is simple white phase noise error, can be easily added in the simulation. This is done by
adjusting the user-defined scale factors for the optical path noise. To get the nominal optical-path noise (aggregate
optical path noise of 20 × 10−12 m Hz−1/2), the scale factor for each optical path is set to unity. If, for example,
one wanted to model additive measurement noise on a particular link, the scale factor for that link could be set to
a number greater than unity (e.g., 1.1 if one wanted 10% larger rms noise on that link.) Each link can be adjusted
independently, if desired. Additionally, if desired, the yij and zij can then be quantized to a fixed bit-depth (see
Figure 7). This is to model, very crudely, one aspect of the fidelity of the measurement process. Currently this is done
naively: all time series are quantized to the same bit depth, and it is assumed that the effective gain of all digitization
processors in the LISA array is the same.
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FIG. 10: Spectra of raw laser noise, the measured quantities yij , zij , and TDI combinations X, α, β, P, U, E, ζ from a simulation
run. Parameters: data length 218 seconds, 1 sample/second, L1 = L2 = L3 = 17 seconds, laser noise at 30 Hz/Hz1/2. (The
plotted spectra were estimated by averaging spectra of subsets of the data; the resulting resolution bandwidth causes the sharp
nulls in some TDI combinations, e.g. X, to be partially filled in.) TDI cancels the laser noise, to below the level of the secondary
noises (optical path and proof mass noises), i.e., by more than 180dB.

E. Implementing TDI

We implement TDI purely in the time domain, using time-offset sums of the laser noise, proof mass noise, and optical
path noise4. Equations (5)–(10) − the time-domain definitions of the TDI combinations − are directly implemented
in the code and the resulting TDI time series for X, Y, Z, α, β, γ, U, ζ, . . . , are then written to disk.

Figure 10 shows an example of the spectra of the raw observables yij and zij at the top of the frame. These are
dominated by the laser noises. After TDI, the laser noise has been removed and the spectra of the TDI combinations
are set by proof mass and optical path noises. Figure 11 shows another simulation output, this time with unequal
arm lengths. Again TDI cancels the laser noise. Spectra of the noise in the TDI combinations now have different
shapes (since the light times are not all equal), but in agreement with the transfer functions for the noises (implicit
in the above equations for the TDI observables; see also Refs. [4, 10]).

F. Spectra of TDI Combinations

As one test of the output, we verify that the spectra of the laser noise, the yij , the zij , and the TDI combinations are
as expected. To do this, we take the time series, divide them up into power-of-2 blocks that are short compared with
the duration of the simulation, window sections with a triangle function to reduce spectral leakage and to produce
high-fidelity spectra (particularly at low-frequencies [16]), and average the squared Fourier transform of the windowed
blocks. The spectra we form this way are in agreement with analytical results [10]. Figure 12 shows a comparison of

4 We took Vi = V ∗

i = 0 in these simulations. These optical bench noises cancel algebraically but could be included in subsequent versions
of the simulation.
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FIG. 11: As Fig. 10, but for the unequal arm case L1 = 15 sec, L2 = 16 sec, L3 = 17 sec.

the simulation output for the unequal arm Michelson combination along with the analytical spectrum for the nominal
noises. The laser noise has been canceled and the spectrum of the TDI X time series is in excellent agreement with
the expected spectrum of the secondary noise sources.

There are some potential subtleties in the use of the noise code and in the interpretation of the results.

1. Geometrical Knowledge. LISA needs to know its own geometry to know when to take the samples. In this
version, the armlengths can be unequal, but are fixed, so the geometry is not changing. In a more realistic
simulation the models of the subsystems cannot be developed as completely independent of the time-dependent
geometry. We plan to address this in a future version of the simulator.

2. Measurement Error. Measurement error is currently modeled only by allowing more (white phase) noise on the
optical path links through the scaling factors discussed above, and as quantization error. Different models of
the measurement process could be incorporated by user-written modules that rewrite the yij and zij disk files.
This would be transparent to the subsequent modules that implement TDI, and so on.

3. Incorporating Subsystem Models. In addition to measurement error, there may be systematic effects of the
measurement process that could be investigated. Better models of subsystems can be incorporated, again by
replacing the files of the yij and zij with time series that have been generated by a detailed model of the
apparatus.

G. Applications and Examples

Synthetic LISA is intended to produce time series useful in study of high-level LISA performance, development of
system diagnostics and veto signals, and in the design of signal analysis procedures.

1. Trade-Off Studies. Synthetic time series supplement analytical results in allocation of subsystem noise budgets
and in the determination of final sensitivity.

2. Noise Analysis and Vetos. Synthetic time series can be used to model the noises, including the nonstationarity
or isolation of faulty subsystems. As a very simple example, Figure 13 shows the power spectrum of the three
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FIG. 12: Comparison of the spectrum of TDI X data combination from the simulation (black line) with expected spectrum (red

line). Parameters: 225 seconds of simulated data, L1 = L2 = L3 = L = 16 seconds, 30 Hz/
√

Hz for the raw laser noise, 3×10−15

m/sec2/
√

Hz for the proof mass noise, 20 × 10−12 m (L/16.67 sec)/
√

Hz for aggregate optical path (shot noise, beam-pointing
noise, etc.) noise spectra (see text). Triangle window function was used in estimation of the spectra. The nulls on the right
are deeper with respect to Figs. 10 and 11 because the longer simulation time reduces the averaging of frequency bins.

unequal-arm Michelson TDI combinations (X, Y, Z) when all noises are nominal except that proof mass 1 has
10× larger rms noise. Since proof mass 1 enters only in X and Z, the isolation of the problem to proof mass 1
is obvious.

3. Optimum Combination of LISA Data and Sensitivity Verification. Optimum sensitivity of LISA requires using
all the data in the array [18]. Synthetic data can be used to supplement analytic results under simulated
conditions which model potential real-LISA effects (nonstationarity of noises, data gaps, etc.)

4. Synthetic Time Series for Algorithm Development. The synthetic time series produced by this simulation have
consistent signal structure and noise correlations across all the TDI combinations. Thus they can be used to
test algorithms for use on the real LISA data, including separation of GW background from LISA Instrumental
noises, matched filtering for bursts and orbit-modulated periodic waves, etc.

H. Limitations of the Current Noise Code

The current noise code has these limitations:

1. Arm Length Quantization. The code currently requires arm lengths to be integer multiples of one second. For our
current proof-of-concept code, this was adopted for ease of programming, and to keep the arrays at reasonable
sizes. We intend to relax this in future versions.

2. USO Noise Calibration. The additional time series required for calibration of the ultra-stable oscillator (USO)
[9], are not included in this version of the simulation.

3. Aberration. Owing to aberration, the real LISA will have different light times on the upleg and downleg of a
given arm [6–8, 15]. This is accounted for in the Modified TDI combinations [7, 17], which will be incorporated
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FIG. 13: Spectra of TDI combinations X, Y, and Z from a simulation where all noises are nominal, except that proof mass 1
(on spacecraft 1, facing spacecraft 2) has 10× larger rms noise. Black and blue lines are X and Y; these are degraded at low
frequency due to noisier PM1 (a 20 dB noisier PM1 increases the Michelson TDI combination by ' 14.2 dB at low frequency,
when all other noises are nominal). Green line is Z; PM1 does not contribute to this TDI combination, so noise performance
is nominal. Parameters: 225 seconds of simulated data, L1 = L2 = L3 = L = 16 seconds, A triangle window function was used
in estimation of the spectra. Red curve is the expected spectrum for nominal proof mass and optical path noises. The nulls
on the right are deeper with respect to Figs. 10 and 11 because the longer simulation time reduces the averaging of frequency
bins.

in the next version of the simulation. This limitation also means that the noise model is currently independent
of the geometry (e.g., rotation of the array, flexing of the array, revolution of the array around the sun). This
uncoupling of the geometry − which defines when TDI samples must be taken, for example − will be addressed
in future versions of the software.

4. Secondary Noise Spectral Shapes. The current version produces time series by running a white-noise time series
through digital filters to get proof mass and optical path time series that have the expected spectral shape. We
allow a user-specified scaling factor to change the level of the secondary noises (by just multiplying the time
series up or down to simulate, say, a noisier or quieter proof mass). If a different shape of the spectrum were
desired, it would have to be incorporated by an external program that overwrote the appropriate optical-path
or proof mass data.

5. Measurement Error. Currently measurement error in the time series is modeled only as additive phase noise,
through the scaling factors of the optical path noises and through the capability to quantize the data time series
yij and zij to a fixed number of bits. As discussed above, more sophisticated models of the measurement could
be done with user-defined modules prior to the TDI step.

6. Shearing of the LISA Array. The current version does not address the fact that the real LISA light-times will
not be constant, but rather functions of time. Second-generation TDI [7, 17], to be included in a future version
of the programs, solves this. Alternatively, improvements in the laser noise by factors of ∼ 10 would make this
effect small enough to ignore. In this case the simpler Modified TDI would be sufficient for LISA.
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V. SUMMARY

We have described the current version of Synthetic LISA, a software package that produces time series of simulated
LISA signals and noises, including their TDI processing. Laser noise is included in the simulation and is shown to
cancel explicitly, using TDI, in both equal and unequal armlength configurations. The package produces signal-plus-
noise series for all the TDI combinations: unequal arm Michelson (X, Y, Z), Sagnac (α, β, γ), beacon (P,Q,R), monitor
(E,F,G), relay (U,V,W), and symmetrical Sagnac (ζ). We have shown examples of spectra of the code output; we
have discussed the limitations of the current model, and our plans for generalizing it in future versions.

APPENDIX A: COMPARISON OF LOW-FREQUENCY NOISE SPECTRA

Here we compare the noise-only spectra of TDI combination X (the unequal arm Michelson) for our simulation and
a previously published simulation code by the Montana group [23]. The simulations make the same default assumption
about the spectrum of proof-mass noise, but different default assumptions about the level of the optical-path/shot
noises. These differences in default settings amount to a factor of four difference in power spectrum at frequencies
larger than about 10−3 Hz. However, when we match assumptions for the optical-path/shot noise, we find good
agreement between the low-frequency noise-only spectra of X.

The noises are:

1. Raw Laser Noise. Our simulation explicitly includes raw laser noise at the nominal LISA value of 30 Hz/
√

Hz,

which converts to a power spectrum of fractional frequency fluctuations of (30 Hz/
√

Hz)2/(3 × 1014Hz)2 =
Slaser

y = 10−26 Hz−1 (see indicated line in, e.g., Figure 10). Our noise simulation code shows how the laser noise
is explicitly canceled (see, e.g., Figure 10) in the construction of the TDI combinations. Knowing that the laser
noise must cancel algebraically, [23] omits laser noise from the current version of the simulation.

2. Proof Mass Noise. Both the modeling efforts start with the same value for the acceleration noise of the proof
masses: 3 × 10−15 m/sec2/

√
Hz. This value can be mapped to the power spectrum of fractional frequency

fluctuations of [10] using the derivative theorem for Fourier transforms and dividing the velocity spectrum by

the speed of light squared: Sproof mass
y = (3×10−15 m sec−2 Hz−1/2)2/(4π2f2c2) = 2.5×10−48[f/1 Hz]

−2
Hz−1.

3. Shot and Optical Path Noises. Reference [23] uses shot noise only while we attempt to account approximately

for both shot noise and beam-pointing noise. Reference [23] uses 1.0 × 10−11 m/
√

Hz as the shot noise on an
individual link. We combine the shot noise and the beam-pointing noise into an aggregate optical-path noise

having spectrum 20 × 10−12 m Hz−1/2 [10]. As in most prior sensitivity studies ([10] and references therein)
we assume that this aggregate optical path noise has the same transfer function as pure shot noise. Again

using the derivative theorem for Fourier transforms, 20 × 10−12 m Hz−1/2 converts to a velocity spectrum of

(20× 10−12 m Hz−1/2)2 × 4π2f2. Dividing by the speed of light squared gives the power spectrum of fractional
frequency fluctuations associated with optical path noise: Soptical path

y = 1.8× 10−37 (f/1 Hz)2 Hz−1. Thus our
simulation and [23] have default high-frequency noise levels that differ (by assumption) in spectral level by a
factor of 4, ours being larger.

Analytical transfer functions for gravitational waves and secondary noise sources (optical path and shot noises) are
given in [3, 10]. Example noise spectra are given above and in [4, 5, 10, 20]. In addition to the differences in the
default optical-path–shot-noise level, other differences between the noise simulations are: (i) [23] produces the three
unequal-arm Michelson combinations (X,Y,Z) [2–4, 10, 23]; ours produces these plus other TDI combinations (e. g.,
the Sagnac, symmetrical Sagnac, Michelson, beacon, relay, monitor, etc. [4, 10]; (ii) the simulation described in this
whitepaper includes explicitly the intra-spacecraft calibration data (the zij , see [4]); (iii) the simulation described here
includes explicitly laser-phase noise to demonstrate its cancellation in the TDI process.

The noise simulation described in this white paper starts with the generation of 18 time series: six for each of
the laser noises, six optical-path noises (sum of shot noise, pointing noise, and other optical-path noises) on the six
one-way beams between optical benches on spacecraft pairs, and six proof-mass–noise time series. In the noise part of
our simulation the time step is ∆ = 1 second and the current version of the code allows the arms to be unequal integer
multiples of 1 second. The laser noises are taken to be white and have one-sided spectral density of 30Hz/

√
Hz [13].

They are generated as follows. Let n(t) be a white, unit-variance–Gaussian, discrete-time noise process generated by
adding 12 uniformly distributed random numbers in the interval (−0.5, 0.5). The laser noises are produced by scaled
versions of the n(t), such that the fractional frequency spectrum is 10−26 Hz−1. The six laser noises are generated
independently and are thus statistically independent. In [23] the laser noise is not explicitly modeled, since TDI
guarantees that it will cancel if the arm lengths are known accurately enough.



16

FIG. 14: A spectrum of strain for TDI combination X, as produced by the simulation code [23]; see text.

The secondary-noise spectra can be used to get the power spectrum of the TDI combinations. For example, assuming
equal arm lengths, L, the spectrum of TDI X is related to the spectra of fractional frequency noises in the proof mass
and the optical-path processes by [4, 10]:

SX(f) = [8 sin2(4πfL) + 32 sin2(2πfL)]Sproof mass
y + 16 sin2(2πfL)Soptical path

y (A1)

To compare our spectra with those generated by [23], we convert the strain spectrum output by [23] to a spectrum of
fractional frequency fluctuations as follows:

1. According to [23], the spectra produced are those of strain, assuming an effective arm length of 1010 m. The
units are Hz−1/2.

2. We multiply the strain spectrum by the assumed [23] effective arm length, 1010m, to get a spectrum of displace-
ment in units of m Hz−1/2.

3. We then square to get the power spectrum of displacement in units of m2 Hz−1.

4. We convert to the spectrum of velocity, using the derivative theorem for Fourier transforms, by multiplying by
4π2f2. The units are (m/sec)2 Hz−1.

5. We convert to a spectrum of fractional frequency fluctuations by dividing by the speed of light squared. The
spectrum now has units of Hz−1.

6. We finally overplot the expected spectrum, SX(f) above, using the assumed optical path noise from [4, 10] and
(with the dashed line) an optical path spectrum level that is four times lower (i. e., shot noise only, as used in
[23]).

Figure 14 shows the spectrum of TDI X from the simulation of [23], expressed as strain per square-root Hz. The total
simulation time was 1 year, and time between samples was 1 year/(220) ' 30.1 seconds (i. e., the Nyquist frequency
was about 0.0166 Hz). Figure 15 shows the spectrum of Figure 14 converted to fractional frequency fluctuations
according to the above prescription. The red curve is the expected spectrum using the proof-mass and default optical-
path spectra of [10], with equal arms (L = 16.67 seconds). The red dashed curve is the expected spectrum using the
assumption of [23] for the optical-path spectrum. Similar plots for TDI X spectra in our simulation are shown in the
main text and agree very well with the solid red curve.

In summary: We compared low-frequency noise spectra of the TDI combination X for the two simulation codes.
The [23] work produces a spectrum of strain. This spectrum was converted to a spectrum of fractional frequency fluc-
tuations to compare with our noise spectra. The agreement at low frequencies, where the proof mass noise dominates,
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FIG. 15: Spectrum of TDI combination X from Figure 14, as produced by the simulation code [23], converted to a spectrum of
fractional frequency fluctuations and compared with the analytical expectation. Blue = simulation from [23]; red = expected
values using the our default optical path noise [10, 20] ; dashed red = expected values with optical path noise using the value
assumed by [23]. L = 16.67 seconds assumed. The spectrum of X from the our code is in excellent agreement with the expected
spectrum (red line). See main text.

is very good (both simulations use 3 × 10−15 m/sec2/
√

Hz for the proof-mass noise spectrum). At higher frequen-
cies (greater than about 10−3 Hz, there is a systematic difference in spectral level of a factor of 4. This systematic
difference simply reflects different default assumptions about the high-frequency noise in the two simulations and is
understood: [23] uses a shot-noise-only spectrum whereas use four times the shot noise spectrum to approximately
account for all optical path noise variations (e. g., beam pointing noise as well as shot noise).
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