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per l’acutezza e la profondità che ha dispensato con abbondanza su queste
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Chapter 1

Introduction

Einstein’s theory of special relativity is deeply connected with the notion
of inertial reference frame: it is correct to say that special-relativistic the-
ories, as described in Lorentz coordinates, speak the language of uniformly
moving observers. Indeed, the integration between the basic postulates of
the theory (the principle of relativity and the light principle), its physi-
cal substructure (Minkowski spacetime), and its basic descriptive elements
(Lorentz coordinate systems) is so tight that it took many years, after the
theory’s inception, to unravel properly the factual from the merely descrip-
tive (for instance, to distinguish symmetry, which is a consequence of the
structure of spacetime, from covariance, which is an algebraic property of
the transformations between coordinate systems).

Nevertheless, there is a special interest in the consideration of accelerated
observers, even in a special-relativistic context. First, accelerated frames are
historically the germ from which general relativity was born, both because
Einstein came to the principle of equivalence through the investigation of
uniformly accelerated frames, and because Einstein’s primary pretense for
the general theory was to extend the relativity of physical laws from in-
ertial to generic observers. Second, there are special topics in relativistic
theories (such as the now-famous Unruh effect, or the problem of radiation
reaction) where it appears that physical insight can benefit much from a
subjective description made from the point of view of accelerated observers.
For instance, the Unruh effect (according to which an accelerated detector
interacts with the ground state of a quantum field as if it was in contact
with a thermal bath of particles) can be understood in terms of field quanti-
zation in accelerated coordinates; and the paradox of the radiation of falling
charges (according to which a charge in a homogeneous gravitational field
should fall differently from an uncharged test body, contrary to the principle
of equivalence) can be elucidated by rewriting Maxwell’s equations in the
accelerated frame.

In this work, we study the physics of accelerated observers from several
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2 Introduction

points of view. In Chapter 2, we identify the origin of the Unruh effect (and
of its analog in black-hole spacetimes, the Hawking effect) in the classical
principle of perspectival semantics, according to which some familiar no-
tions defined in special-relativistic theories (such as particle and radiation)
inevitably lose their coherence when they are transported to accelerated
frames or to curved spacetimes. In Chapter 3, we propose a general scheme
to build an accelerated system of coordinates (Märzke-Wheeler coordinates)
adapted to the motion of a generic accelerated observer, and we suggest two
applications for this new system. It turns out that the definition of coordi-
nate systems (both inertial and accelerated) is intimately tied to the choice
of a relation of distant simultaneity between events: in Chapter 4, we review
the perennial debate (among relativists and philosophers of physics alike)
on the conventionality of simultaneity in special relativity, and we examine
the conventionality of Märzke-Wheeler simultaneity. More in detail, here is
the synopsis of the three chapters of this thesis.

Chapter 1: Classical roots of the Unruh and Hawking effects

Although the Unruh and Hawking effects are commonly considered as pure
quantum mechanical phenomena, we argue that they are deeply rooted at
the classical level. We believe that we can get very useful insights on these
effects if we consider how the special-relativistic notion of particle becomes
blurred when it is employed in general-relativistic theories, or in special rel-
ativity, but for accelerated observers. This blurring is an instance of a more
general behavior (perspectival semantics) that arises when the principle of
equivalence is used to generalize special-relativistic theories (be they quan-
tum or classical) to curved spacetimes or accelerated observers. We support
our claim by analyzing a classical analogue of the Unruh effect that stems
from the noninvariance of the notion of electromagnetic radiation, as seen
by inertial and accelerated observers. We use four gedanken-experimente to
illustrate this example, and we review the related debate on the radiation
of uniformly falling charges.

Chapter 2: Märzke-Wheeler coordinates for accelerated observers
in special relativity

In special relativity, the definition of coordinate systems adapted to generic
accelerated observers is a long-standing problem, which has found unequiv-
ocal solutions only for the simplest motions. We show that the Märzke-
Wheeler construction, an extension of the Einstein synchronization conven-
tion, produces accelerated systems of coordinates with desirable properties:
(a) they reduce to Lorentz coordinates in a neighborhood of the observers’
worldlines; (b) they index continuously and completely the causal envelope
of the worldline (that is, the intersection of its causal past and its causal
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future: for well-behaved worldlines, the entire spacetime); (c) they provide a
smooth and consistent foliation of the causal envelope into spacelike surfaces.
We compare Märzke-Wheeler coordinates with other definitions of acceler-
ated coordinates, we examine them in the special case of stationary motions,
and we employ the notion of Märzke-Wheeler simultaneity to clarify the rel-
ativistic paradox of the twins. Finally, we suggest that field quantization
in Märzke-Wheeler coordinates could solve a well-known inconsistency in
the theory of the Unruh effect (namely, the circumstance that quantization
in naive rotating coordinates is inconsistent with the measurements of a
rotating detector).

Chapter 3: The Conventionality of Simultaneity

The problem of the conventionality of simultaneity in special relativity has
been the subject of a vigorous discussion in the last 30 years: the issue
is whether the Einstein synchronization convention (which defines Lorentz
inertial time) is a fundamental constituent of special relativity or whether
other conventions can still preserve the physical content of the theory. We
review the main contributions to this debate, and we find that the evi-
dence for the nonconventionality of Einstein synchronization appears very
compelling. We extend the discussion to accelerated observers in special rel-
ativity, and we make the case for the nonconventionality of Märkze-Wheeler
simultaneity.
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Chapter 2

Classical Roots of the Unruh
and Hawking Effects

2.1 Introduction

For the last three decades, the Unruh and Hawking effects have been de-
servedly among the most widely discussed and popularized subjects in the-
oretical physics. A strong part of their folklore is the conviction that these
effects have an eminently quantum mechanical character. For instance,
many authors write that black holes are truly black by classical physics,
so the analogy between black-hole mechanics and thermodynamics would
not be complete without the inclusion of quantum mechanics, which pro-
vides the thermal emission of particles from black-hole horizons [Hawking
effect (Hawking, 1975)]. And again, the fact that the Minkowski vacuum
contains particles that can be seen by an accelerated detector [Unruh effect
(Unruh, 1976)] is perceived as a modern quantum marvel on a par, say, with
quantum tunneling and EPR effects.2 In this thesis we claim instead that
both the Unruh and the Hawking effect have a clear classical counterpart,
and that they can be understood as typical examples of the perspectival
semantics that arises in the context of the difficult migration from special
relativity to curved-spacetime physics, or simply to an extension of special
relativity which includes accelerated observers (Vallisneri, 1997).

The assertion that the Poincaré group is the global symmetry group of
spacetime has been seminal to the great theoretical synthesis of the first
half of this century, begun with the full recognition of Maxwell’s electro-
magnetism as a special-relativistic theory, and beautifully climaxed with
quantum field theory. So the concepts and the interpretive paradigms of

1Originally published as M. Pauri and M. Vallisneri, Found. of Phys. 29, 1499–1520
(1999). gr-qc/9903052.

2As insightfully discussed by Sciama (1979), these phenomena bring together Einstein’s
independent legacies, fluctuation theory and relativity, in a very intriguing way.
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6 CLASSICAL ROOTS OF THE UNRUH AND HAWKING EFFECTS

electromagnetism and quantum field theory refer naturally to the privileged
class of the inertial observers of special relativity, who are closely associ-
ated with the symmetry properties of the theory (see Sec. 4.3.1). Now, the
equivalence principle of general relativity still ensures that the Lorentz group
is the symmetry group of spacetime, but only locally: this local character
becomes crucial when we try to generalize to curved-spacetime geometries
the special-relativistic concepts and paradigms that are based on the global
symmetry of Minkowski spacetime.

In Sec. 2.2 we shall argue that the essence of the Unruh and Hawking
effects can be understood from this point of view, even before considering
their quantum character: we shall see that the special-relativistic notion
of quantum particle becomes slippery when we try to extend it to curved
spacetimes or to noninertial observers, and that this slipperiness is the source
of the Unruh and Hawking effects.

In Sec. 2.3 we shall see that the same ambiguity befalls the entirely
classical concept of electromagnetic radiation, and we shall examine the
especially instructive paradox of a charge falling in a constant homogeneous
gravitational field. Namely, because it emits radiation, a falling charge might
be distinguished from a falling, uncharged body, suggesting a violation of the
equivalence principle of general relativity. We shall deliberately introduce
the issue in a blurred way that echoes its initial appreciation in the literature
as a borderline case between special and general relativity; this presentation
makes the paradox most apparent. But the paradox fades if we place the
question fully in the theoretical framework of general relativity. The solution
is that the notion of electromagnetic radiation is not invariant with respect
to transformations between inertial and accelerated frames, so radiation can
be produced or transformed away by changing the state of motion of the
observer.

We regard this illusion as a veritable forerunner of the Unruh and Hawk-
ing effects, and we submit that these effects are, in R. Peierls’ definition
(1979), intellectual surprises that could have been foreseen much earlier;
the reason they were not lies in the difficult epistemic upgrade required to
switch from the special to the general-relativistic worldview.

2.2 Classical nature of the Unruh and Hawking
effects

As many authors have underlined, the most transparent explanation of the
Unruh and Hawking effects is that they are brought about by the presence
of conflicting definitions for the notion of quantum particle. The essen-
tial ingredients in the standard quantization of free field theories are the
normal-mode decomposition of field operators, and the distinction between
positive-frequency and negative-frequency modes, which fixes the identity
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of particles, of antiparticles, and (most important) of the vacuum state.
However, there are infinitely many ways to accomplish this decomposition,3

which correspond roughly to all the possible choices of a complete set of
solutions for the classical wave equation. When we build a correspondence
between quantum field theories based on different decompositions,4 we find
some cases where a vacuum state is mapped to a particulate state.

In special-relativistic theories, there is an obvious criterion to select one
particular quantization: we pick the classical solutions of definite frequency
with respect to Lorentz coordinate time. In doing so, we ensure a covariant
notion of particle that is adequate for all inertial observers. However, if we
extend our scope beyond inertial observers, we find that in some situations
there can be more than one logical choice of modes.

A first example is the Unruh effect (Unruh, 1976), which takes an ob-
server traveling through Minkowski spacetime along a uniformly accelerated
worldline. The observer naturally uses modes of definite frequency with re-
spect to her proper time: she then finds that the Minkowski vacuum (the
vacuum state, according to the mode decomposition based on Lorentz co-
ordinate time) corresponds to a thermal bath of particles according to an
accelerated-mode decomposition.

This result is considered robust, because it can be derived by an alto-
gether different approach (Unruh, 1976). By standard approximation theory,
we find that a quantum detector moving along a predetermined, accelerated
worldline will thermalize on interaction with the Minkowski vacuum. It is
a well known result that the energy-absorption rate of the detector is de-
termined essentially by the Fourier transform of the field autocorrelation
function (taken along the detector’s worldline, and with respect to the de-
tector’s proper time):

R(ω) =
∫ +∞

−∞
dτ e−iωτ 〈0|φ̂(xµ(0))φ̂(xµ(τ))|0〉. (2.1)

The Wiener–Khinchin theorem states that the Fourier transform of a signal’s
autocorrelation is just the signal’s power spectrum. The response of the
detector, therefore, is correlated to the energy content of the field (in a
specific manner that depends on the form of the energy–momentum tensor
of the field, and on the interaction Hamiltonian that couples the field and
the detector). Therefore, when the detector reports a thermal signal, we can
interpret the signal as proving the presence of a thermal bath of particles.
Any energy absorbed by the detector, however, must come ultimately from
the classical agency that keeps the detector on its worldline.

3See for instance (Wald, 1994).
4Even if different choices of the modes lead in general to unitarily inequivalent the-

ories (Wald, 1994), it is always possible to establish an arbitrarily accurate correspon-
dence between the states of any two theories, using the so called algebraic approach
(Haag and Kastler, 1964).
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Moving on to curved spacetimes, consider the Hawking effect (Hawking,
1975), which takes a quantum field living on a black-hole background geome-
try (more precisely, on the geometry of a spherically symmetric distribution
of matter that collapses to a black hole). The symmetries of this space-
time hint to two natural definitions of quantum particle: one of them is
appropriate for the observers who inhabit the early stages of collapse, when
spacetime is still approximately Minkowskian; the other one is appropriate
for the late observers who witness the final phase with a stationary black
hole. The vacuum state, as it is defined by early observers, appears to the
late observers as a thermal bath of particles coming from the direction of
the black hole. Again, this conclusion can be strengthened by the consider-
ation of quantum detectors traveling through Schwarzschild spacetime (see
for instance Vallisneri, 1997).

2.2.1 Slippery notions and interpretive illusions

A physical theory consists loosely of three interpenetrating bodies of knowl-
edge: an axiomatic structure, which identifies the principles and the laws
of the theory, and the consequences that can be deduced from them; an
operative interface to experimentation, which is often coupled with a set of
defining or encyclopaedic experimental results; and a semantic framework
of interpretations and paradigms, which are necessary to ascribe meaning to
the observed physical world. Take for instance standard one-particle quan-
tum theory: the axiomatic structure could be the one explained in Dirac’s
Quantum Mechanics (1958), whereas the interpretive framework could be
the Copenhagen interpretation.

Each of these three elements evolves differently with time. Predictably,
the semantic framework is the fluidest element: often it depends on unspo-
ken perceptions and understandings, and only rarely it resides organically in
written documents. The evolution of the semantic framework can be traced
through the history of its blocks, physical notions: some notions are doomed
to extinction (think of the ether); others pass unscathed or even augmented
from a successful theory to the next one (think of mass and energy); and
others again are subject to curious blurrings and crossbreedings (think of
particles and waves after the quantum revolution). This memetics of no-
tions (see Dawkins, 1976) is indeed one of the most charming and enjoyable
aspects in the history of theoretical physics.

We will say that we are in the presence of perspectival semantics when,
within a theory, we can assign distinct semantic contents to the same physi-
cal information, according to different but equally legitimate readings. This
happens for special-relativistic quantum field theory when it is extended to
curved spacetimes, or to accelerated observers. Even if Einstein provided the
principle of equivalence to ferry across special-relativistic physics to general-
relativistic shores, the old semantics cannot always cope with this upgrade:
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some notions get slippery, or become afflicted by paradoxes.
The Unruh and Hawking effects are instantiations of perspectival seman-

tics where the ambivalent information is the value of the field ; the perspec-
tival interpretation of the field points to the failure of the notion of particle.
Let us then dissect this very notion. We feel entitled to speak of quantum
particles when we remark a certain periodic structure in the temporal and
spatial dependence of the field. This attribution of meaning is not new to
quantum field theory, but it can be traced etymologically to certain basic
notions of quantum field theory’s parent theories:

1. in one-particle quantum mechanics, we think of the solutions to the
wave equation as describing a particle;

2. in classical nonrelativistic mechanics, position and momentum are fun-
damental observables, which define fully the location of the represen-
tative point in phase space;

3. in relativistic classical mechanics, the fundamental status of the posi-
tion observable is somehow weakened (due to problems of covariance);
on the other hand, the energy–momentum four-vector gains clout as
the essential attribute of a relativistic particle;

4. again in relativistic classical mechanics, energy and momentum are the
generators of infinitesimal translations in time and space; so Fourier
modes are identified as waves (and therefore, particles) of definite en-
ergy and momentum.

Because of the covariance properties of the energy–momentum four-vector,
all the inertial observers in Minkowski spacetime perform compatible fre-
quency analyses of the same field information, so they all come up with com-
patible statements about the presence of particles. When we try to enlarge
quantum field theory to accommodate accelerated observers in Minkowski
spacetime or generic observers in curved spacetimes, we get the Unruh and
Hawking effects. Because we are outside the compatibility domain of the no-
tion of particle, a legitimate frequency assessment can ascribe a particulate
content to quantum states that from the inertial point of view are devoid of
particles.

2.2.2 The Unruh and Hawking effects in classical field theory

We come now to our claim about the Unruh and Hawking effects. The
normal-mode decomposition of the field belongs arguably to the classical
domain: for instance, in classical field theory we can write a real scalar field
as a sum of a complete set of positive-frequency, orthonormal modes,

φ(xµ) =
∑

i

aiψi(xµ) + a∗iψ
∗
i (x

µ); (2.2)
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we can then interpret the coefficients ai and a∗i as expressing the presence
of the single wave modes in the overall configuration of the field. Quantum
field theory is obtained by promoting the coefficients ai to Fock operators.
We can then read the particle content of any quantum state by means of
the number operators, Ni ≡ a†iai.

Suppose we set up two competing decompositions for the field (just as
happens in the Unruh and Hawking effects). The transformation between
the coefficients (or operators) of the two decompositions will not depend on
the classical or quantum procedure used to read the field signal ; it will depend
only on the way in which one set of modes can be written in terms of the
other (in practice, it will depend on the scalar products between the modes
from the two sets5). As we have already remarked, the essence of the Unruh
and Hawking effects resides in this transformation, which we now come to
recognize as originally classical. Moreover, Eq. (2.1) parallels closely the
expression found by Planck (1900) for the rate at which a classical charged
harmonic oscillator absorbs energy from a statistical radiation field:

Rcl(ω) =
∫ +∞

−∞
dτ e−iωτ 〈φ(xµ(0))φ(xµ(τ))〉; (2.3)

here ω is the natural frequency of the oscillator, and 〈. . .〉 denotes an en-
semble average.

If our considerations are correct, then classical field theory should exhibit
the Unruh effect. Does it? Not if we take the fundamental configuration
of classical field theory to be an everywhere null field, which is truly a
universally invariant configuration! No matter how we read a null signal, it
will always remain null. In quantum field theory, instead, the nonvanishing
fluctuations of the vacuum state always provide a fundamental signal that
makes the Unruh and Hawking perspectival effects possible.

5This is true already at the classical level. The usual way to define scalar products
in free quantum field theories is to adapt the symplectic structure of the classical–wave-
equation solution space (see for instance (Wald, 1994)). This procedure ensures the con-
servation of scalar products throughout evolution. At the classical level, these scalar
products can be used to set up a conserved spectral decomposition for any solution: that
is, any solution can be seen as a superposition of evolving wave modes.

If we establish a second decomposition alternative to Eq. (2.2),

φ(xµ) =
∑

i

ciξi(x
µ) + c∗i ξ

∗
i (xµ),

we then get the new coefficients and the new creation and destruction operators as

cj =
∑

i

αijai + β∗
ija

∗
i ,

αij = (ξj , ψi), βij = (ξ∗j , ψi),

where we use the scalar product under which the ξi are a complete, orthonormal set.



2.3. THE EQUIVALENCE PRINCIPLE PARADOX 11

There are two ways to introduce such a fundamental signal in classical
field theory: the first is simply to bring in classical sources, and to examine
the wave-mode content of the resulting inhomogenous solutions of the wave
equation. Higuchi and Matsas (1993) define a classical particle number as
energy density per unit frequency divided by frequency, and proceed to show
that the relation between the particle numbers computed in inertial and
accelerated coordinates is consistent with the existence of an Unruh thermal
bath. A related approach is due to Srinivasan and colleagues (1997a; 1997b).

The second route is to postulate that the fundamental configuration of
the classical field consists of an incoherent superposition of plane waves,
which endow the vacuum with a zero-point energy of h̄ω/2 per mode; the
phases of the waves are assumed to be random variables with uniform and
independent distributions. Such a theory is known as stochastic classical
field theory, and (in its specialization to electromagnetism) it was intro-
duced by Marshall (1963; 1965); the constant h̄ is imported into the clas-
sical framework by requiring the mean-square displacement of a charged
harmonic oscillator to be the same as in quantum theory. The fundamental
signal of stochastic classical field theory makes the Unruh effect possible
(Boyer, 1984).

Our arguments for the existence of the Unruh effect in classical field
theory can be reproduced for the fields that inhabit a gravitational-collapse
spacetime. Therefore, there must be as well a classical Hawking effect. It
is interesting to ask whether these classical homologues could have been
noticed during the development of classical electromagnetism; then the Un-
ruh and Hawking effects would have been derived subsequently as quantum
versions of classical effects. The answer, though, is probably negative. The
classical Unruh and Hawking effects have a definite retrospective flavor, in
part because the notion of wave mode has a weaker semantic content then
the notion of particle, and in part because in the classical domain there is
no fluctuating vacuum to highlight the phenomenon.

Nevertheless, we believe that the Unruh and Hawking perspectival effects
could have been predicted earlier, by a different route: that is, through
the analogy with the slippery notion of radiation found in the extension
of classical electromagnetism to general relativity. Slippery radiation is the
subject of the next section.

2.3 The equivalence principle paradox

One of the challenges posed by the advent of general relativity to the es-
tablished comprehension of the physical world was the apparent conflict
between the principle of equivalence and the well established fact that ac-
celerated charges radiate. This conflict can be spelled out by the following
Gedankenexperiment : let us move to a laboratory setting on Earth, and
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1 2

3 4

Figure 2.1: Four Gedankenexperimente: To the right of the laboratory
frame, supported by a compensating agency (rockets), is our imaginary Ein-
stein’s elevator, which falls freely (except for experiment 1) in the gravita-
tional field of the Earth. We assume the gravitational field to be homoge-
neous.

do tests with a system that consists of a pointlike electric charge and of a
detector of electromagnetic radiation. We will check whether the detector
registers any radiation when the system is set up as follows (see Fig. 2.1):

1. we support both the charge and the detector in the Earth’s gravita-
tional field;

2. we support the detector, and we let the charge fall freely;

3. we let the detector fall, and we support the charge;

4. we let both the detector and the charge fall freely.

If we are willing to concede that our laboratory is small enough compared
to the Earth, we can work in the idealization that the detector and the
charge are immersed in a constant homogeneous gravitational field. Under
this condition, falling objects move along uniformly accelerated trajectories
(possibly relativistic ones) in the vertical direction.
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Let us first consider experiments 1 and 2. Our prerelativistic intuition
suggests that the charge at rest will emit no radiation, whereas the falling
charge will; moreover, because the falling charge will lose energy to electro-
magnetic radiation, it will fall more slowly than a similar uncharged body.
However, the equivalence principle of general relativity, at least in the case
of homogeneous (apparent) fields, requires charged test particles to follow
the same geodesics as uncharged ones!6

By 1960, the very existence of radiation emitted by uniformly acceler-
ated charges was still in dispute. In V. Ginzburg’s words (1970), this is
one of the “perpetual problems” of classical electrodynamics; indeed, its
discussion continued for decades. M. Born’s original solution (1909) for the
field of a uniformly accelerated charge was interpreted divergingly as im-
plying the emission of radiation (Schott, 1912, 1915; Milner, 1921; Drukey,
1949; Bradbury, 1962; Leibovitz and Peres, 1963; Grandy, 1970) or its ab-
sence (von Laue, 1919; Pauli, 1921; Rosen, 1962). Most notably, in his 1921
Enzyklopädie der Matematischen Wissenschaften article, Pauli ruled that
uniformly accelerated charges do not radiate.

In Sec. 2.3.1 we briefly summarize the debate, and we see that uniformly
accelerated charges do radiate according to the standard Larmor’s formula,

R =
2
3
e2a2

c3
. (2.4)

Once the presence of radiation is established, we are left with a contradiction
with the equivalence principle that attracted by itself an extensive literature
(Bondi and Gold, 1955; Fulton and Rohrlich, 1960; Rohrlich, 1961, 1963;
Mould, 1964; Kovetz and Tauber, 1969; Ginzburg, 1970; Boulware, 1980;
Piazzese and Rizzi, 1985). For instance, it has been argued (Bondi and Gold,
1955; Fulton and Rohrlich, 1960) that radiation can be measured only at a
large distance from the falling charge, but that (by various considerations)
we cannot postulate homogeneous gravitational fields that extend far enough
to accommodate significant measurements; therefore, the problem of radia-
tion in a homogeneous field is badly posed.

Yet we can find a more satisfactory resolution by framing the issue within
our modern understanding of general relativity (Rohrlich, 1963; Kovetz and Tauber,
1969; Ginzburg, 1970). The (strong) principle of equivalence (Weinberg,
1972; Misner et al., 1973; Ciufolini and Wheeler, 1995) can be formulated
as stating that the special-relativistic equations of physics are valid, un-
modified, in (local) inertial reference frames. Coming to our experiments,
under the hypothesis of a homogeneous gravitational field, Maxwell’s special-
relativistic equations are valid globally throughout spacetime, but only when

6Of course, because our charge is still a test particle, we work under the assumption
that neither the mass of the charge nor the mass of the electromagnetic field are relevant
for spacetime geometry.
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they are written in the freely falling reference frame.
Therefore, the conjunction of Larmor’s formula (2.4) with the principle

of equivalence should not be used to predict the outcome of the supported
experiments 1 and 2, but rather of experiments 3 and 4. In experiment 4, the
freely falling system of detector and charge will behave exactly as a similar
system at rest in the absence of gravitation, so the detector will report no
radiation. In experiment 3, the supported charge will be accelerated rela-
tively to the freely falling detector, emitting radiation as given by Eq. (2.4).
This radiation is a consequence of the equivalence principle, rather than a
violation!

Now, if the detection of radiation depended only on the state of motion
of the charge, we would get a troubling result for experiments 1 and 2, where
the detector is supported: contrary to our earlier intuition, the charges that
are accelerated with respect to the laboratory reference frame (experiment
2) would not radiate, whereas the charges at rest in the laboratory frame
(experiment 1) would radiate. The latter conclusion is especially embar-
rassing, because it is not clear how a continuous transfer of energy can be
obtained in a stationary physical system.

The problem here is that we cannot extend the results obtained in the
inertial frame to the supported experiments. That is, we cannot infer the
readings of the supported detector from those of the inertial one, but we must
explicitly derive them within a suitable extension of the special-relativistic
theory of electromagnetism. There are several ways to do so: by modeling
a simple radiation detector and examining its response to electromagnetic
fields while the detector undergoes acceleration (Mould, 1964); by using a
weak field approximation to general relativity (Kovetz and Tauber, 1969);
or by evaluating the flux of the Poynting vector through spherical surfaces
at rest in the supported frame (Piazzese and Rizzi, 1985).

Following Rohrlich (1963), in Sec. 2.3.2 we shall instead seek an acceler-
ated set of coordinates that are especially adapted to observers supported in
a constant homogeneous gravitational field. In this scheme, we predict the
outcome of experiments 1 and 2 by taking the electromagnetic field tensors
found in the inertial system for supported and freely falling charges, and by
transforming the tensors to supported coordinates. In Sec. 2.3.3 we shall
see that with respect to the supported coordinates, the charge at rest has
a field that is very nearly of Coulomb form (experiment 1); and that the
falling charge does emit radiation (experiment 2).

This procedure [in accord with with Mould (1964) and with Kovetz and
Tauber (1969)] shows that the results intuitively expected from the sup-
ported experiments are correct to a very good approximation, at least for
reasonable gravitational accelerations.7 We find also that that the very
notion of radiation is not invariant with respect to transformations from

7See Eq. (2.19).
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inertial to accelerated reference frames. As noticed by Sciama (1979), an
accelerated (in this case, supported) observer will detect radiation where a
freely falling observer sees only a pure Coulomb field :8 this phenomenon is
very similar to the appearance of virtual particles in the Unruh effect. As
in the Unruh effect, the energy that is absorbed by the accelerated observer
must ultimately come from the agency that enforces the acceleration, rather
than from the putative source of radiation (the charge). The source of the
energy is discussed in Sec. 2.3.4.

2.3.1 The radiation of uniformly accelerated charges

In special relativity, we define uniformly accelerated motion by requiring
that the worldline xµ(τ) have a four-acceleration aµ = d2xµ/dτ2 of constant
norm (aµaµ)1/2 = g, or equivalently that the three-acceleration a(τ) be
a constant vector in the instantaneous rest frame of the worldline. If we
restrict our attention to the motions that take place on a two-dimensional
spacetime plane,9 we get (up to Poincaré transformations) the worldline



t = g−1 sinh gτ,
x = 0,
y = 0,

z = g−1 cosh gτ

(2.5)

(see Pauli, 1921; Rohrlich, 1965; Misner et al., 1973). Since these equations
describe a hyperbola in the zt plane, this motion is also called hyperbolic, in
contrast with the parabolic free fall of Galilean mechanics. The coordinates
used to write Eq. (2.5) belong to the instantaneous Lorentz rest frame of the
moving point, at the proper time τ = 0. The trajectory is invariant with
respect to Lorentz boosts along the z axis, which merely shift the trajectory
along itself; indeed, the boosts amount to simple translations in proper time,
which transform between the instantaneous rest frames at different proper
times.

Is Eq. (2.5) also the correct worldline for a charged particle coupled to
the electromagnetic field? It appears to be so, because if we insert it into
the standard Dirac–Lorentz equation (Dirac, 1938; Jackson, 1962; Rohrlich,
1965),

maµ − Fµ
ext =

2
3
e2

c3

(
ȧµ − aαaα

c2
uµ

)
, (2.6)

8Experiment 2 is the classical analog of the quantum Unruh effect, while experiment
4 corresponds to the quantum statement that an inertial detector sees no particles in the
Minkowski vacuum. Levin and colleagues (1992) discuss what amounts to a quantum
analog of experiments 1 and 3. They introduce a quantum field that lives in a uniformly
accelerated cavity, and study its interactions with comoving or inertial detectors.

9Relaxing this hypothesis yields the larger class of stationary trajectories, which are
discussed in Ch. 3 (Sec. 3.3) and in App .B.
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the radiative damping term on the right vanishes. So the trajectory (2.5)
solves Eq. (2.6) for a suitable external field Fµ

ext. This circumstance has
been the root of many misgivings: because apparently the charge loses no
mechanical energy to radiation, it seems natural to conclude that there is
no radiation at all. We will come to this in a moment.

The electromagnetic fields associated with hyperbolic motion were first
derived explicitly by Born (1909), and they can be expressed in the usual
cylindrical coordinates (t, ρ, φ, z) as



Eρ = 8eg−2ρz/ξ3,

Eφ = 0,

Ez = −4eg−2(g−2 + ρ2 + t2 − z2)/ξ3,
Hρ = 0,

Hφ = 8eg−2ρt/ξ3,

Hz = 0,

(2.7)

where ξ = [(g−2 − ρ2 + t2 − z2)2 + 4g−2ρ2]1/2 (Fulton and Rohrlich, 1960).
Under the hypothesis of retarded potentials, the fields must be restricted to
the causal future z + t > 0 of the charge. This condition was not enforced
in Born’s original solution, and it was introduced by Schott (1912; 1915).
Bondi and Gold (1955) patched the solution further by introducing Dirac-
delta fields on the surface z + t = 0, where otherwise the field would not
satisfy Maxwell’s equations.

The magnetic field and therefore Poynting’s vector vanish throughout
space at time t = 0. By symmetry, they must also vanish in every instanta-
neous rest frame, at all the events that in that frame are simultaneous with
the charge at the origin. Pauli (1921) concludes that “there is no formation
of a wave zone nor any corresponding radiation”.

Now, the notion of electromagnetic radiation is usually associated with
two connected physical facts:

1. the fields that originate at an event along the worldline of the charge,
and which propagate outward on the lightcone, consist both of a
Coulomb term decreasing as 1/R2 (where R is the radius of the light-
cone in any given Lorentz frame) and of a 1/R radiation term, which
eventually comes to dominate the field in the so called wave zone;

2. the radiation term arises because, at successive instants, the accelerat-
ing charge is not in the right position to support its previous Coulomb
field. Thus a portion of field is effectively splintered away : it takes on
an independent existence and travels outward from the charge, at the
speed of light, carrying its own endowment of energy–momentum.

Following Fulton and Rohrlich (1960), we adopt a local, Lorentz-invariant
criterion to decide if a charge is instantaneously radiating at the event xµ(τ)
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along its worldline: we evaluate the flux of the energy-momentum tensor T µν

through light spheres centered at xµ(τ). In the limit of infinite radius for the
sphere,10 we get a unique four-vector that can be written from the kinematic
parameters of the charge’s trajectory:

dPµ

dτ
=

2
3
e2

c3
(aαaα)uµ. (2.8)

According to this criterion, the uniformly accelerated charge radiates with
exactly Larmor’s power, R = 2e2g2/3c2. As for Pauli’s objection, it does not
matter if Poynting’s three-vector vanishes on a constant-time surface in each
instantaneous reference frame, because the transfer of energy–momentum
must be evaluated using the fully relativistic tensor T µν . We would get
R = 0 only if Poynting’s vector, as expressed in the instantaneous rest
frame, were null on the lightcone centered on the charge, rather than on the
spacelike surface t = 0.

Finally, we are left to prove the conservation of energy. Indeed, if the
external force Fµ

ext of Eq. (2.6) is entirely transformed into kinetic energy,
from where does the radiated energy come? We may answer this question
by realizing that hyperbolic motion describes the hardly physical situation
of a charge incoming from z → −∞ and leaving for z → ∞, with asymptotic
speeds that approach c. So when we ask about the conservation of energy,
we are in fact trying to balance infinite quantities: we should expect to
do this, in some sense, in the limit. Consider instead a trajectory built by
attaching two portions of uniform motion to a finite segment of uniformly
accelerated motion. At the junctions, the acceleration must necessarily be
nonuniform; it is just there that radiation reaction acts to ensure that the
total work exerted by Fµ

ext is equal to the increase in the kinetic energy of
the charge, plus the energy radiated to infinity (Ginzburg, 1979; Tagliavini,
1991). We can imagine that the energy flux radiated by the charge during the
uniformly accelerated motion is being borrowed from the divergent energy
of the electromagnetic field near the charge, which effectively acts as an
infinite reservoir. While draining energy, the field becomes more and more
different from the pure velocity field of an inertial charge; when hyperbolic
motion finally ends, the external force must provide all the energy that is
necessary to reestablish the original structure of the field.11

2.3.2 Construction of a supported frame in a constant ho-
mogeneous gravitational field

Following Rohrlich (1963; 1965), we now seek a set of noninertial coordinates
to describe the physics seen by supported observers. These observers follow a

10If the limit is to be finite, the field must have a 1/R asymptotic behavior, because
Tµν is quadratic in Fµν .

11D. Tagliavini, personal communication (March 1997).
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nongeodesic trajectory through Minkowski spacetime, and from their point
of view, cronogeometry appears to be static (that is, the speed of clocks
and the length of objects does not vary with time) and flat (spacetime is
Minkowskian); moreover, spatial geometry appears to be homogeneous in
the two horizontal directions. We shall then define a constant homogeneous
gravitational field as a flat static metric that is manifestly invariant under
translations and rotations in a spatial plane. We further impose the require-
ment that, in these coordinates, the geodesic equation reproduce the correct
Newtonian behavior in the nonrelativistic limit.

The most general metric that satisfies these properties can be written
as12

ds2 = −D(z′) dt′2 + dx′2 + dy′2 + (
√
D(z′)

′
/g)2 dz′2, (2.9)

where, because of the Newtonian limit, D(z′) is required to approximate
1+2gz′ to first order in gz′. The supported observers inhabit the worldlines
of constant x′, y′ and z′. There are several explicit possibilities for D(z′),
because we have the freedom to synchronize clocks differently at different
heights. For instance, one of the possible metrics is

ds2 = −(1 + 2gz′) dt′2 + dx′2 + dy′2 + (1 + 2gz′)−1dz′2, (2.10)

where D(z′) coincides with its nonrelativistic limit. The most useful choice
for D(z′), however, yields Rindler’s metric

ds2 = −(1 + gz′)2dt′2 + dx′2 + dy′2 + dz′2, (2.11)

which implies a linear variation of clock speed by height. Einstein used this
metric implicitly in his seminal argument about gravitational energy and
the speed of clocks (Einstein, 1907). Note that, independently of D(z′), it is
always possible to put the metric in the Rindler form (2.11) by introducing
the new vertical coordinate z′′ defined by 1 + gz′′ =

√
D(z′).

The transformation equations between inertial coordinates and the ac-
celerated coordinates that lead to Eq. (2.9) are given (up to Poincaré trans-
formations) by 



t = g−1
√
D(z′) sinh gt′,

x = x′,
y = y′,

z = g−1
√
D(z′) cosh gt′.

(2.12)

So from the inertial point of view, supported observers move on hyperbolic
trajectories, with constant accelerations that depend on the observers’ z′.

12See App. A. Throughout this chapter we use primed letters to indicate coordinates
and tensors in the supported frame; also, we use Dt to denote the quantity that is simply
called D in the appendix.
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This is true also for supported charges, which will then radiate as discussed
in Sec. 2.3.1, validating our prediction as to the result of experiment 3.

What about the converse? We obtain the trajectories of freely falling test
bodies in the supported frame by means of the geodesic equation, written
in supported coordinates (the required Christoffel coefficients may be found
in Eq. (A.13) of App. A). Even if we can always cast the metric in the
unified Rindler form (2.11) by a suitable choice of the coordinate system,
we should remember that for different choices ofD(z′) we get different shapes
for the geodesics, a fact that is obviously relevant to our considerations. In
particular, hyperbolic trajectories are obtained only by setting (Rohrlich,
1963)

D(z′) =
1

cosh2
√

(1 − gz′)2 − 1
. (2.13)

In other words, supported observers will not in general see a freely falling
object move on a hyperbolic trajectory. As remarked by Rohrlich (1963),
“this provides a simple example dispelling the often expressed belief that
in general relativity acceleration is relative and therefore reciprocal in the
sense that the motion of A relative to B is identical (apart from a sense of
direction) with the motion of B relative to A”.

2.3.3 Physics in the supported frame

Let us put our supported coordinates to a good use, by predicting the result
of experiments 1 and 2. Since now the metric is not manifestly Minkowskian,
Maxwell’s equations have to assume their generally covariant form:

g′αβ∇α∇βA
′µ = −4πj′µ, (2.14)

F ′
µν = ∂µA

′
ν − ∂νA

′
µ (2.15)

(as written in the Lorentz gauge ∇µA
′µ = 0). To model experiment 1, we

find the field of a charge at rest at x′ = y′ = z′ = 0 in the supported frame.
Because however we know that in the inertial frame the charge performs
hyperbolic motion, we do not need to solve Eq. (2.14); instead, we can
simply transform the field components (2.7) to the new coordinate system:

F ′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν
Fαβ . (2.16)

We then get (Rohrlich, 1963)

E′
φ′ = H ′

ρ′ = H ′
φ′ = H ′

z′ = 0,

E′
ρ′ = g(z Eρ − tHφ), E′

z′ =
dD(z′)

dz′
Ez

2 g
;

(2.17)
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and then, using Eq. (2.7) and Eq. (2.12),

E′
ρ′ = 8 e ρ′D(z′)/g3ξ′3,

E′
z′ = −2 e (ρ′2 + g−2 − g−2D(z′))

g3ξ′3
dD(z′)

dz′
,

ξ′ = g−2
√

(1 + g2ρ′2)2 + 2(−1 + g2ρ′2)D(z′) +D(z′)2.

(2.18)

Because the magnetic field vanishes throughout spacetime independently of
D(z′), it is clear by our previous discussion that the charge does not radiate
in the supported frame. Thus, even if there is radiation in the inertial frame,
any evidence of energy transfer is hidden to the observers who are at rest
with respect to the charge. What they see instead is an electric field that
can be derived from the potential

φ′ = eg
1 + g2ρ′2 +D(z′)

[(1 − g2ρ′2 −D(z′))2 + 4 g2ρ′2]1/2
. (2.19)

The shape of the field is dependent on the choice of D(z′). If we write D(z′)
up to second order as D(z′) = 1 + 2z′g+αz′2g2 +O(g3), it follows that, up
to first order in g,

φ′ =
e

r′
+
e g z′(ρ′2 − (α − 2)z′2)

2 r′3
+O(g2), (2.20)

where obviously r′2 = ρ′2 + z′2.
We can apply the same reasoning to derive the field of a freely falling

charge, by transforming a pure Coulomb field to the supported frame; the
transformed Coulomb field is

E′
φ′ = E′

z′ = H ′
φ′ = H ′

z′ = 0,

E′
ρ′ =

gρz ·Er

r
, E′

z′ =
dD(z′)

dz′
z ·Er

2 g r
, H ′

φ′ = − 1
D(z′)

dD(z′)
dz′

ρt · Er

2 r
;

(2.21)
using Er = e/r2 and Eq. (2.12), we get

E′
ρ′ =

√
D(z′)

eρ′ cosh gt′

(ρ′2 + g−2D(z′) cosh2 gt′)3/2
,

E′
z′ =

√
D(z′)

dD(z′)
dz′

e cosh gt′

2 g2(ρ′2 + g−2D(z′)2 cosh2 gt′)
,

H ′
φ′ = − 1√

D(z′)
dD(z′)

dz′
eρ′ sinh gt′

2 g(ρ′2 + g−2D(z′) cosh2 gt′)3/2
.

(2.22)

In analogy to the criterion outlined in Sec. 2.3.1 for the inertial case, we can
now evaluate the flux of the resulting energy–momentum tensor through the
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light spheres centered along the worldline of the charge (Rohrlich, 1963).
The flux is not null, proving that the charge does radiate. This fact settles
experiment 2 for good, and adds evidence to the claim that the notion of
radiation is not invariant with respect to transformations from inertial to
accelerated frames. Nevertheless, we still have to clarify how this noninvari-
ance can be compatible with energy considerations.

2.3.4 The balance of energy in the four experiments

In both experiments 1 and 4 there is neither emission nor absorption of
electromagnetic energy, so we are only concerned with the source of the
energy transferred to the detectors in experiments 2 and 3. The discussion
of Sec. 2.3.1 applies directly to experiment 3: the energy of the radiation
emitted by the supported charge and detected in the inertial frame must be
provided by the agency that enforces the uniformly accelerated motion of
the charge. This balance is apparent in the Dirac–Lorentz equation (2.6)
for all the physical accelerated motions, it remains true in the limit of pure
hyperbolic motion.

Experiment 2 is the direct classical analogue of the Unruh effect: even if
there is no detectable radiation in the inertial frame, the accelerated detector
somehow manages to absorb energy. In the accelerated frame, this energy
comes from the radiation field (2.21). Yet, from the inertial point of view,
the static Coulomb field of the freely falling charge has no energy to lose.
If there was no accelerating agency to support the detector, no radiation
would be detected; hence, it is clear that all the absorbed energy must
come from the accelerating agency. We can argue as follows: any detector
of electromagnetic radiation must necessarily be charged on its own, and
it must contain internal degrees of freedom. Thus the accelerating agency
must supply an additional amount of work to balance the energy dissipated
away by radiation reaction from the accelerating charged detector. Inertial
observers will perceive this physical effect as a radiation field coming from
the detector.

This situation parallels closely what happens in the Unruh effect, where
the absorption of a Rindler particle by the accelerated detector is seen as
the emission of a Minkowski particle in the inertial frame (Unruh and Wald,
1984). In the quantum case, this emission is due to the unavoidable coupling
of the accelerated quantum detector to the vacuum state of the field. Sur-
prisingly, the coupling can be shown to justify classical radiation reaction via
a fluctuation–dissipation theorem (Sciama et al., 1981; Callen and Welton,
1951).
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Chapter 3

Märzke–Wheeler
Coordinates
for Accelerated Observers
in Special Relativity

3.1 Introduction

In the usual textbook special relativity, the distinction between inertial ob-
server and Lorentz coordinate frame is blurred.2 Because of the symmetries
of Minkowski spacetime, inertial observers can label all the events of space-
time in a simple and consistent manner that is based on physical conventions
and idealized procedures. [For example, inertial observers can be thought
to set up Lorentz coordinate frames via a framework of ideal clocks and
rigid rods that extend throughout the spacetime region of interest, outfit-
ting it with suitable measuring devices; the clocks are synchronized with
light signals; and so on. See, for instance, (Misner et al., 1973).]

For inertial observers, Lorentz coordinates are a device to extend the con-
cept of physical reality from the observers’ worldlines to the entire spacetime,
building a description of the world which incorporates notions of distance,
and simultaneity. Moreover, this description of physics is translated eas-
ily between inertial observers in relative motion with respect to each other,
using the transformations of the Poincaré group.

It follows that in special relativity many physical notions have a joint
local and global valence: they are defined with reference to the entire
Minkowski spacetime, but they also carry a well defined meaning for lo-

1Originally published as M. Pauri and M. Vallisneri, Found. Phys. Lett., in press (Oc-
tober 2000). gr-qc/0006095.

2We will have more to say about this in Sec. 4.3.1.

23
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cal inertial observers. An instance is the notion of particle in quantum
field theory, which corresponds to a global, quantized classical mode of the
field extending across Minkowski spacetime, but also to the outcome of lo-
cal detections along an observer’s trajectory (we discussed this at length in
Ch. 2).

Now, suppose we are interested in the observations made by noninertial
observers: of course we could study their physics in some given laboratory
inertial frame of reference. Yet if we could rewrite all equations in a set of
coordinates that is somehow adapted and natural to the observers’ acceler-
ated motion, we would obtain an interesting representation of the intrinsic
physics that the accelerated observers experience. A well known example
is the Unruh effect (Unruh, 1976), where laboratory physics predicts that
a uniformly accelerated observer moving through the Minkowski quantum
vacuum will behave as if in contact with a thermal bath, whereas intrinsic
physics describes the Minkowski vacuum as consisting of a thermal distri-
bution of quantum particles (under a notion of particle appropriate to the
the accelerated observer).

3.2 Definition of coordinates for accelerated ob-
servers

We set out to define an adapted coordinate system for an accelerated ob-
server (we shall call him Axel) who is moving through Minkowski spacetime.
Since the accelerated system should describe Axel’s intrinsic physics, its time
coordinate should coincide with Axel’s proper time. Moreover, around any
event of Axel’s worldline, there is a small neighborhood where the accel-
erated coordinates should approximate Axel’s instantaneous Lorentz rest
frame. To satisfy these requirements, we can propagate a Fermi–Walker
transported tetrad3 along the worldline, and use the tetrad vectors (one of
which will point along Axel’s four-velocity) to reach out to Axel’s surround-
ings.

How do we extend these prescriptions to cover the entire Minkowski
spacetime? We can define extended-tetrad coordinates by stretching out
rigidly the Fermi–Walker transported axes beyond Axel’s immediate vicinity,
but we run into trouble soon: for instance, if Axel (a) starts at rest, (b)

3Fermi–Walker transported vectors “change from instant to instant by precisely that
amount implied by the change of the four-velocity” (Misner et al., 1973, p. 170); the
transported four-vectors for Axel then obey

dvµ

dτ
= (uµaν − uνaµ)vν , (3.1)

where τ is Axel’s proper time, uµ = dxµ/dτ his four-velocity, and aµ = duµ/dτ his
acceleration.
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Figure 3.1: Worldline of an observer who undergoes a brief period of ac-
celeration (shown dashed). The extension of the Fermi–Walker transported
coordinate system runs into trouble when different constant-time surfaces
overlap on the left. [Adapted from (Misner et al., 1973).]

moves for a while with constant acceleration |a| = g, then (c) continues with
constant velocity (see Fig. 3.1), we find that the constant-time surfaces of
phase a overlap with those of phase c, at a distance of order g−1 from Axel’s
worldline. The constant-time planes intersect because they are orthogonal
to Axel’s four-velocity uµ, which tilts during accelerated motion.

3.3 The Märzke–Wheeler procedure

We need a way to foliate Minkowski spacetime into nonoverlapping surfaces
of simultaneity that are adapted to Axel’s motion and that reduce to local
Lorentz frames around his worldline. Märzke and Wheeler (1964) discussed
an extension of Einstein’s synchronization convention4 to synchronize ob-
servers in curved spacetime. The notion of Märzke–Wheeler simultaneity,
restricted to accelerated observers in flat spacetime, has just the properties
we need.5 We use it to build Märzke–Wheeler coordinates, specified as fol-

4By Einstein’s convention, two inertial observers get synchronized by exchanging light
signals, while assuming that the one-way speed of light between the inertial worldlines
is equal to the average round-trip speed. The resulting notion of simultaneity yields the
standard slicing of Minkowski spacetime into hyperplanes of constant Lorentz coordinate
time. In Ch. 4 we will have much to say about the conventionality of Einstein and Märzke–
Wheeler simultaneity.

5Our construction bears resemblance to some applications of Milne’s k-calculus
(Page, 1936) and to other arguments in the literature (Ives, 1950; Whitrow, 1961;
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Figure 3.2: Definition of Märzke–Wheeler coordinates. (a): General case.
(b): Inertial case. Märzke–Wheeler coordinates reproduce a Lorentz frame.
(c): Proof that the constant-τ̄ surfaces are spacelike (see p. 27).

lows. Imagine that: (a) at each event along his worldline P(τ), accelerated
observer Axel emits a flash of light imprinted with his proper time; (b) in the
spatial region that Axel wants to monitor, there are labeling devices capable
of receiving Axel’s flashes and of sending them back with their signature;
(c) Axel is always on the lookout for returning signals (see Fig. 3.2a). Now,
suppose that, at the event Q, a labeling device receives and rebroadcasts a
light flash originally emitted by Axel at proper time τ1, and that Axel re-
ceives the returning signal at proper time τ2. Then Axel will conventionally
label Q with a time coordinate τ̄ = (τ1 + τ2)/2 and with a radial coordi-
nate σ = (τ2 − τ1)/2. These two coordinates can then be completed by two
angular coordinates which specify the direction of Q with respect to P(τ̄ ).

If P(τ) is an inertial worldline, the constant-τ̄ surfaces are just constant–
Lorentz-time surfaces, and σ is simply the radius of Q in spherical Lorentz
coordinates (see Fig. 3.2b): for inertial observers, Märzke–Wheeler coordi-
nates reduce to Lorentz coordinates (see App. D for a proof in a special
case). Even better, this procedure yields well defined coordinates τ̄ and σ
for any event Q that lies in the intersection of the causal past and causal fu-
ture6 of the worldline P(τ) (we shall refer to this set as the causal envelope
of P(τ); it contains all the events from which bidirectional communication
with Axel is possible). Proof: (a) the past and future lightcones of Q nec-
essarily intersect with P(τ) somewhere, by definition of causal future and

Kilmister and Tonkinson, 1993).
6See (Wald, 1984, Ch. 8) for these and other definitions concerning the causal structure

of spacetime.
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past; (b) the intersection of a null surface with a timelike curve is unique,
so once Q is given, τ1 and τ2 are well defined. It follows also that constant-τ̄
surfaces cannot intersect.

We shall use the notation Στ̄ to refer to the surface of simultaneity
labeled by the Märzke–Wheeler time τ̄ . To prove that each Στ̄ is spacelike,
refer to Fig. 3.2c, and consider a point Q′ that is displaced infinitesimally
from Q; the future lightcone with origin in Q′ intersects Axel’s worldline at
the event P(τ2 + δτ2). Define

r2
µ ≡ (

Q − P(τ2)
)µ
,

r′2
µ ≡ (

Q′ − P(τ2 + δτ2)
)µ
,

δxµ ≡ (
Q′ − Q

)µ;

(3.2)

both r2µ and r′2
µ are null vectors. Since the displacements are infinitesimal,

we can write (
P(τ2 + δτ2) − P(τ2)

)µ = δτ2 u
µ(τ2) (3.3)

(uµ is Axel’s four-velocity). Then we have

0 = |r′2µ|2 = |r2µ + δxµ − δτ2 u
µ|2 =

= |r2µ|2 + 2 r2µ(δxµ − δτ2 uµ) +O(δτ2) =

= 2r2µ(δxµ − δτ2 uµ) +O(δτ2),

(3.4)

and
∂τ2
∂xµ

=
r2µ

r2νuν(τ2)
. (3.5)

The same relation holds for ∂τ1/∂xµ:

∂τ1
∂xµ

=
r1µ

r1νuν(τ1)
, (3.6)

where r1µ ≡ (Q−P(τ1))µ. So we can write the normal vector to the constant-
τ̄ surface as

∂τ̄

∂xµ
=

1
2

(
∂τ1
∂xµ

+
∂τ2
∂xµ

)
=

1
2

(
r1µ

r1νuν(τ1)
+

r2µ

r2νuν(τ2)

)
. (3.7)

Furthermore, ∣∣∣∣ ∂τ̄∂xµ

∣∣∣∣
2

=
r1

µr2µ(
r1νuν(τ1)

) (
r2νuν(τ2)

) . (3.8)

Looking at Fig. 3.2c, you can convince yourself that r1µr2µ > 0, r1νuν(τ1) >
0, and r2νuν(τ2) < 0 (throughout this chapter we set c = 1 and take a time-
like metric). Consequently, the surfaces of constant-τ̄ have normal vectors
that are timelike everywhere. Under appropriate hypotheses of smoothness
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for the worldline P(τ), the constant-τ̄ surfaces will also be differentiable;
altogether, they qualify as spacelike.

Whereas the constant-time surfaces obtained by the extended-tetrad
procedure (described in Sec. 3.2) are always three-dimensional planes, the
global shape of the Märzke–Wheeler constant-τ̄ surfaces depends on the en-
tire history of the observer, both past and future.7 Accordingly, the three-
dimensional metric 3gij induced by the Minkowski metric on the surfaces
will depend on τ̄ . This is true in general, but not for stationary worldlines,
defined by

∀τ, |P(τ + ∆τ) − P(τ)| = |P(τ) − P(0)|. (3.9)

Stationary worldlines represent motions that show the same behavior at all
proper times. Synge (1967) and Letaw (1981) obtained stationary worldlines
by the alternative definition of relativistic trajectories with constant accel-
eration and curvatures. In App. B, we briefly review their classification, as
given by Synge (1967). For stationary worldlines, the surfaces Στ̄ maintain
always the same shape and metric.

You can easily build a stationary trajectory by taking any timelike in-
tegral curve of the isometries of Minkowski spacetime, and rescaling its
parametrization to obtain a worldline that satisfies uµuµ = −1. Indeed, in
this way we can obtain any stationary trajectory, because we can always
write its four-velocity as a linear combination Uµ of the ten Minkowski
Killing fields8 (i. e., the infinitesimal generators of isometries). The simplest
case of stationary trajectories are inertial worldlines, obtained by combin-
ing the Killing fields of a time translation and a space translation; further
examples are linear uniform acceleration and uniform rotation, obtained as
the integral curves of, respectively, a Lorentz boost and a rotation plus a
time translation.

No matter how we choose to define the constant-time surfaces of a sta-
tionary observer (call her Stacy), the Killing field Uµ (which coincides with
uµ on Stacy’s worldline, but is defined all over Minkowski spacetime) gener-
ates infinitesimal translations in time that carry each constant-time surface
into the next one, while conserving its three-metric. Once Stacy has chosen
a single constant-time surface and a set of spatial coordinates to describe
it, she can use Uµ to propagate the surface and its coordinates forward and
backward in time, defining coordinates for the entire Minkowski spacetime.

7Yet this global dependence is hierarchical. Take for instance the constant-time surface
τ̄ = τ0, with origin in P(τ0): the behavior of the worldline at proper times that lie to the
future of τ0 + ∆τ , or to the past of τ0 − ∆τ , can only influence the structure of the
constant-time surface for σ > ∆τ .

8They are the four translations ∂t, ∂x, ∂y, ∂z, the three boosts x ∂t + t ∂x, y ∂t + t ∂y,
z ∂t + t ∂z, and the three rotations, y ∂z − z ∂y, z ∂x − x∂z x ∂y − y ∂x.
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3.4 Märzke–Wheeler coordinates for stationary ob-
servers

Stationary curves are a very useful arena to compare Märzke–Wheeler coor-
dinates with other accelerated systems, such as the stationary coordinates
derived by Letaw and Pfautsch (1982). As a first example, suppose Stacy
moves with linear, uniform acceleration in (1+1)-dimensional Minkowski
spacetime9 (so she will be Hyper-Stacy). We can write her trajectory as{

t = g−1 sinh gτ,

x = g−1 cosh gτ,
(Hyper-Stacy : worldline) (3.10)

which is an integral curve of the infinitesimal Lorentz boost Uµ = g(x∂t +
t ∂x), where g is the magnitude of the acceleration. In this case, the extended-
tetrad procedure gives the traditional Rindler coordinates (Rindler, 1975):

{
t = g−1(1 + ξ) sinh gτ,

x = g−1(1 + ξ) cosh gτ.
(Hyper-Stacy : Rindler coordinates) (3.11)

You can check easily that the flow of Uµ carries the constant-τ surfaces back-
ward and forward in τ , and that the Rindler metric ds2 = −(1+gξ)2dτ2+dξ2

is always conserved. Let us now derive Märzke–Wheeler coordinates for
Hyper-Stacy’s motion. According to our prescriptions, the surface Στ̄=0

[the set of the events that are simultaneous to P(0)] includes all the events
that, for some σ, receive light signals from P(−σ) and send them back to
P(σ). By symmetry, Στ̄=0 must coincide with the positive-x semiaxis; we
then find that the Märzke–Wheeler radial coordinate is σ = g−1 log gx. Us-
ing the finite isometry generated by Uµ with parameter τ̄ ′, we can now turn
Στ̄=0 into any other Στ̄ ′ . Altogether, the coordinate transformation between
Minkowski and Märzke–Wheeler coordinates is{

t = g−1egσ sinh gτ̄ ,

x = g−1egσ cosh gτ̄ .
(Hyper-Stacy : M.–W. coordinates) (3.12)

The Rindler and Märzke–Wheeler constant-time surfaces coincide, and in-
deed the two coordinate sets are very similar. (If we identify ξ with σ and τ
with τ̄ , they coincide up to linear order, because both systems must coincide
with local Lorentz frames in the vicinity of the worldline.)

We turn now to a more interesting example, where Märzke–Wheeler co-
ordinates show a much richer structure than expected by conventional wis-
dom: uniform relativistic rotation.10 A typical trajectory in 2+1 dimensions

9This is the hyperbolic motion that we first encountered in Sec. 2.3.1. In Synge’s
classification (1967), it is a type-IIa helix.

10In Synge’s classification (1967), a type-IIc helix.
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for Roto-Stacy (who else?) is

t =

√
1 +R2Ω2 τ,

r = R,

φ = Ω τ,

(Roto-Stacy : worldline) (3.13)

where the constant R is the geometric radius of the trajectory, and Ω is
the proper angular velocity; the coordinate angular velocity is dφ/dt =
Ω/

√
1 + Ω2R2. Finally, Roto-Stacy’s generating Killing vector field is Uµ =√

1 +R2Ω2 ∂t + Ω ∂φ. The traditional coordinate system for Roto-Stacy are
rigidly rotating coordinates:


t =

√
1 +R2Ω2 τ,

r = r′,
φ = φ′ + Ω τ

(Roto-Stacy : rigidly rotating coordinates)

(3.14)
(some authors even define t = τ , violating the first requirement we set in
Sec. 3.2). In these coordinates, Roto-Stacy stands fixed in space at r′ =
R, φ′ = 0; the constant-τ surfaces coincide with constant-t planes; and
the points with fixed r′ and φ′ rotate in the inertial frame with angular
velocity dφ/dt = Ω/

√
1 + Ω2R2, which is faster than light for r′ > r′lim =√

1 + Ω2R2/Ω2. The metric is

ds2 = − (1 + Ω2R2) dτ2 + r′2(dφ′ + Ω dτ)2 + dr′2 =

= − [1 + (R2 − r′2)Ω2] dτ2 + 2Ω r′2 dτ dφ′ + r′2dφ′2 + dr′2.

(Roto-Stacy : rigidly rotating metric)

(3.15)

Now move on to Märzke–Wheeler coordinates, and consider at first the
surface Στ̄=0. Märzke–Wheeler coordinates have their origin at Roto-Stacy’s
position, P(0): (x = R, y = 0). We find the curves of constant σ as the
intersection (an ellipse) of the future lightcone of P(−σ) with the past light-
cone of P(σ). As σ increases, the ellipses move outward, weaving the surface
Στ̄=0, which turns out to be defined by


t = c(σ) sin θ,
x = b(σ) cos θ +R cos Ωσ,
y = a(σ) sin θ,

(Roto-Stacy : M.–W. coord., τ̄ = 0) (3.16)

where a(σ) =
√

1 +R2Ω2 σ, c(σ) = R sinΩσ, and b(σ) =
√
a2(σ) − c2(σ)

(see App. C; our choice of the angular coordinate is conventional, but con-
venient). As σ increases, the centers of the ellipses oscillate on the x axis
between R and −R; the semiaxes a(σ) and b(σ) grow in such a way that no
two ellipses ever intersect; and the ellipses themselves pitch up and down in
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z

Figure 3.3: Geometry of constant-τ̄ surfaces for uniformly rotating ob-
servers. (a): The intersection of the lightcones with origin in P(−σ) and
P(σ) defines an ellipse. (b): The union of all constant-σ ellipses weaves the
constant-τ̄ surface. Notice the oscillating pitch of the ellipses.

the time direction, as if they were hinging on the y axis (see Fig. 3.3), so
the Märzke–Wheeler constant-τ̄ surface Στ̄=0 deviates in undulatory fash-
ion with respect to the Minkowski constant-time surface t = 0 [because any
event Q looks closer when the emission event P(−σ) and the reception event
P(σ) are on the near side of the origin; it looks farther if they are on the
other side]. In the limit σ → ∞, the constant-σ ellipses turn into circles;
but the undulation in the t direction maintains the finite amplitude R.

We use the isometry generated by Uµ to propagate these coordinates
from Στ̄=0 throughout Minkowski spacetime. The complete transformation
between Minkowski and Märzke–Wheeler coordinates is then




t = c(σ) sin θ +
√

1 +R2Ω2 τ,(
x
y

)
=

(
cos Ωτ − sin Ωτ
sin Ωτ cos Ωτ

)
·
(
b(σ) cos θ +R cos Ωσ

a(σ) sin θ

)
.

(3.17)
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3.5 Märzke–Wheeler coordinates and the paradox
of the twins

Märzke–Wheeler coordinates cast a new light on the relativistic paradox
of the twins.11 This gedankenexperiment earns the designation of paradox
because, at first sight, the motion of the twins is reciprocal, whereas the
physical effects of relativistic time dilation are not. In the usual arrange-
ment, shown in Fig. 3.4a, the journeying twin (Ulysses) moves with constant
speed v, first away from and then toward the waiting, inertial (and noniden-
tical!) twin Penelope. According to the Lorentz transformation between the
inertial frames associated with the twins, Penelope sees Ulysses’ proper time
as dilated by the relativistic factor γ = (1 − v2)−1/2 > 1, so when the twins
are rejoined, Penelope has aged γ times more than Ulysses. Yet, it is also
true that Penelope always moves with a speed v relatively to Ulysses, so he
should see her proper time as dilated, and he should be older in the end!

The problem is that the notion of time dilation, as it is usually discussed,
amounts to little more than a statement on how to relate the coordinate
times of different Lorentz frames; it also concerns the observations of dif-
ferent inertial observers, whose proper times coincide with the coordinate
times of their Lorentz rest frames. Now, Ulysses is not an inertial observer
throughout his motion, because at event CU he turns around and begins his
return trip toward Penelope. Along the worldline segments ACU and CBU ,
it is correct to say that Ulysses sees Penelope’s proper time as dilated, in
the following sense: if Ulysses compares his proper time with Penelope’s
at events which are simultaneous in his Lorentz rest frame, then Penelope
appears to be aging at a slower pace. However, when Ulysses inverts his
velocity at CU (see Fig. 3.4b), he switches to a new Lorentz frame, and his
constant-time surfaces change their spacetime orientation abruptly. Just
before arriving in CU , Ulysses considers himself simultaneous to the event
C′

P along Penelope’s worldline; just after leaving CU , according to his new
Lorentz frame, Ulysses considers himself simultaneous to C′′

P . However, C′
P

and C′′
P are distinct events, separated by a finite lapse of time! There is a

finite section of Penelope’s worldline which Ulysses effectively skips and to
which he is never simultaneous. Because of this missing finite lapse of Pene-
lope’s proper time, Ulysses is younger at his final reunion with Penelope,
even if throughout the trip he reckoned that Penelope was aging at a slower
pace than him!12

11The literature on the subject is immense and often redundant. Even if the paradox was
already present in Einstein’s 1905 seminal paper, it was P. Langevin who first presented
it in its modern form. Arzeliès (1966) and Marder Marder (1971) give excellent annotated
bibliographies for contributions up to, respectively, 1966 and 1971.

12Ulysses’ switch of Lorentz frames in CU has generated some controversy, centered on
the physical effects of Ulysses’ acceleration around CU . These effects are irrelevant, as can
be seen by the third twin argument introduced by Lord Halsbury (Salmon, 1975): in brief,
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Figure 3.4: The relativistic paradox of the twins.

The worldlines of the twins are drawn in the Lorentz rest frame of the inertial twin,
Penelope, who moves in spacetime from A to B through CP . The journeying twin,
Ulysses, travels first from A to CU with velocity v, then inverts his motion to rejoin
Penelope in B.

(a) Lorentz slicing of spacetime according to Penelope.

(b) Lorentz slicing of spacetime according to Ulysses, on his separate stretches of
inertial motion. Ulysses skips a finite lapse of Penelope’s worldline (shown
dashed).

(c) Märzke–Wheeler slicing of spacetime, according to Ulysses. This slicing coin-
cides with the Lorentz slicing in b for events in the regions D and E (these
events belong to the causal envelopes of the worldline segments ACU and
CBU ), but it shows a peculiar structure in region C.

From a general-relativistic perspective, there is no paradox from the be-
ginning: Ulysses and Penelope move on different spacetime paths between
the same two events. The lapse of proper time is a particular functional
of the path followed: no wonder that it is different for the two twins! The
surprise of nonreciprocal time dilation arises because (a) Ulysses needs to
compare simultaneous events on his and on Penelope’s worldlines to know
who is aging faster, so he needs a global notion of simultaneity or, equiv-
alently, a slicing of spacetime into spacelike, constant-time surfaces; (b)
because our Ulysses has a special-relativistic background, he naturally em-

at CU Ulysses communicates the reading of his clock to a third twin who was already
traveling toward Penelope with velocity v; thus, the proper time elapsed on the paths
ACUB and ACP B can be compared without any twin ever experiencing acceleration.
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ploys the slicing implicit in his two distinct Lorentz rest frames; (c) but that
slicing fails to cover a finite region of spacetime, where nevertheless Penelope
spends part of her time!

Märzke–Wheeler coordinates avoid this problem, because by definition
they provide a consistent time slicing of the causal envelope of any observer’s
worldline: Ulysses and Penelope stay well inside each other’s causal enve-
lope, simply because they start together and cannot travel faster than light.
For inertial Penelope, Märzke–Wheeler coordinates reproduce a Lorentz rest
frame (Fig. 3.4a). So nothing changes in her account of Ulysses’ aging: her
proper time lapse ∆tP is γ times Ulysses’ proper time lapse ∆tU .

Likewise, Märzke–Wheeler coordinates for Ulysses do reproduce a Lorentz
frame, but only and separately for the events in the causal envelopes (D and
E) of the segments of Ulysses’ uninterrupted inertial motion (AC and CB;
see Fig. 3.4c). In the process of Märzke–Wheeler synchronization, the events
in D and E communicate with events along the same segment. On the con-
trary, region C contains events that are spacelike related to C, and that
receive light signals from AC and reflect them back to CB. It is in this re-
gion that the noninertial character of Ulysses’ motion becomes manifest. A
simple calculation (App. D) yields the slicing structure shown in Fig. 3.4c:
in D and E the slices assume the typical inclination of Lorentz constant-
time surfaces, but in C the slices become perpendicular to AB (Penelope’s
worldline), because they split the difference between the two opposing iner-
tial motions AC and CB.

If Ulysses employs the Märzke–Wheeler notion of simultaneity to com-
pare his age with Penelope’s at simultaneous times, he accounts for the final
aging difference as follows. As long as Penelope’s trajectory remains within
the regions D and E where the Märzke–Wheeler and Lorentz notions of
simultaneity coincide, Ulysses ages γ times faster than Penelope, just as a
näıve use of relativistic time dilation would imply. However, when Penelope
moves through region C (from DP to EP ), she ages γ(1 + v) > 1 times
faster than Ulysses (who moves from DU to EU ). Altogether, when the
twins are rejoined in B, Ulysses is younger by an overall factor of γ. See
Table 22 and Fig. 3.5 for a precise tally of proper times. In App. E we study
Ulysses’ Märzke–Wheeler interpretation of Penelope’s aging in a modified
construction where Ulysses moves with constant speed and acceleration on
Roto-Stacy ’s circular trajectory. The resulting tP [tU ] (Fig. E.1) is smooth
and resembles qualitatively the function shown in Fig. 3.5.

Keep in mind that the comparison of local relative aging is dependent
on how we slice spacetime into constant-time surfaces. Alternative slicings
will lead Ulysses to different distributions of Penelope’s total proper time
along his worldline. Stautberg Greenwood (1976) defines simultaneity by in-
tegrating the Doppler-shifted frequency of monocromatic signals exchanged
by the twins. Unruh (1981) employs the notion of parallax distance to extend
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Ulysses’ ∆tU
in segment

Ulysses’
total tU

Penelope’s ∆tP
in segment

Penelope’s
total tP

dtP

dtU

in segment
AD 1

2(1+v)
1

2(1+v)
1
2

1−v√
1−v2

1
2

1−v√
1−v2

√
1 − v2

DC v
2(1+v)

1
2

1
2

v√
1−v2

1
2

1√
1−v2

1+v√
1−v2

CE v
2(1+v)

1+2v
2(1+v)

1
2

v√
1−v2

1
2

1+v2√
1−v2

1+v√
1−v2

EB 1
2(1+v) 1 1

2
1−v√
1−v2

1√
1−v2

√
1 − v2

Table 3.1: Evolution of Ulysses’ and Penelope’s proper times along the
segments shown in Fig. 3.4c.

All comparisons are made at events that are simultaneous according to Ulysses’
Märzke–Wheeler slicing. The last column shows that Ulysses’ ages faster than
Penelope’s along segments AD and EB, but not along DC and CE. Units are
normalized so that Ulysses’ total proper time lapse is 1.

Ulysses’ local definitions of space and time, to the effect that at times he sees
Penelope recede in time. Debs and Redhead (1996) analyze the class of slic-
ings induced by Reichenbach’s nonstandard synchronies (Redhead, 1993),
which generalize the Einstein convention by positing different speeds for
the light signals in the two directions.13 However, we believe that Märzke–
Wheeler slicing has a simple physical rationale and that it does a good job
of locating the nonreciprocal, differential aging in the region of spacetime
where the nonlocal effects of Ulysses’ turnaround in C are felt.

3.6 Märzke–Wheeler coordinates and the Unruh

effect

We wish to suggest yet another application for Märzke–Wheeler coordi-
nates. As we underlined in Sec. 2.2, the well-known Unruh effect (Unruh,
1976) has two mutually supporting but fundamentally distinct derivations.
In its laboratory version (in the sense introduced in Sec. 3.1), a quantum
monopole detector (DeWitt, 1979), moving on a uniformly accelerated, clas-
sical worldline through the Minkowski quantum vacuum, is excited with the
same probability of an inertial detector in contact with a thermal bath of
particles. In the intrinsic version, free-field quantization is carried out in
Rindler coordinates, which are regarded as adapted to uniformly acceler-
ated observers: with some caution (see Note 4 on p. 7), the vacuum state of
the standard Minkowski quantum field theory can be translated into a state
of the accelerated theory; as it turns out, the translated state describes a
thermal distribution of Rindler particles. In both the laboratory and the in-

13We shall examine nonstandard synchrony closely in Ch. 4.
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Figure 3.5: Penelope’s proper time, in units of Ulysses’ total proper-time
lapse, as determined by Ulysses with Lorentz slicing (dashed line, see
Fig. 3.4b) or Märzke–Wheeler slicing (continuous line, see Fig. 3.4c).

trinsic versions, the temperature of the thermal bath is directly proportional
to the acceleration of the detector (or of the observer).

If we try to generalize the Unruh effect from uniformly accelerated to
other stationary observers, we soon run into an inconsistency between labo-
ratory and intrinsic physics (Letaw, 1980, 1981; Letaw and Pfautsch, 1981;
Davies et al., 1996; Vallisneri, 1997). For instance, laboratory physics pre-
dicts that a quantum monopole detector in uniform circular motion through
the Minkowski quantum vacuum will be excited (its excitation probability
will be consistent with a non–Planckian particle distribution, and it will de-
pend on the acceleration but also on the curvature of the worldline). How-
ever, if we use the rigidly rotating coordinates of Eq. (3.14) to obtain an
intrinsic quantization of the field, we merely translate the Minkowski vac-
uum state into another vacuum state. In short, for observers and detectors
on some types of stationary worldlines, the intrinsic version of the Unruh
effect is blind to the particles that are seen in the laboratory version.

We note here that the extension of the Unruh effect to worldlines even
more general than stationary worldlines is not usually discussed in the lit-
erature, for two related reasons. From the viewpoint of laboratory physics,
it is only for stationary worldlines that proper time factors out of the de-
tector excitation equations, so we can turn the time-integrated excitation
probability into a constant probability rate along the worldline. From the
intrinsic viewpoint, it is only for stationary worldlines that spacetime can
be easily foliated into a succession of identical spatial surfaces, mapped into
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each other by a Killing vector field. This property is desirable to extract
the time dependence of the classical wave equation, and to define quantum
particles from a set of classical wave modes that maintain the same structure
on successive spacelike slices.

Let us go back to the stationary trajectories for which field quantization
in adapted coordinates fails to reproduce the measurements of accelerated
detectors. Some authors (Letaw and Pfautsch, 1981; Davies et al., 1996)
have blamed the failure on the fact that, under the definition of time induced
by the stationary Killing field, the set of positive frequency classical modes
(which are picked up by the accelerated detector) is not the same as the
set of positive norm modes (which determine the particle content of the
vacuum fluctuations, as seen in the accelerated frame). This discrepancy
seems to occur when the Killing field is not timelike everywhere: for rotating
observers and quantization in rigidly rotating coordinates, it happens at radii
R > Ω−1, where the tangential velocity of the rigid system exceeds the speed
of light.

We have found an argument that suggests that field quantization in the
Märkze–Wheeler coordinates of stationary observers might reproduce the
observations of accelerated detectors, solving the contradiction between the
laboratory and intrinsic versions of the Unruh effect. Let us see how. In
the simple case of a massless Klein–Gordon quantum field, the excitation
probability of the detectors can be written as (see, for instance, Vallisneri,
1997)
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(3.18)

where we have used the symmetry of the system with respect to the station-
ary Killing field, and where we have set σ = τ/2. Now consider the couple
of events (P(−σ), P(σ)) on the worldline of the detector. From the point of
view of the Märzke–Wheeler construction, these are the emission and detec-
tion events that exchange light signals with all the events of Märzke-Wheeler
radius σ on the surface Στ̄=0 of constant Märzke–Wheeler time τ̄ = 0 (refer
to Fig. 3.3).

Now, it is always possible to express the Klein-Gordon field φ̂(x) by
means of its propagator K. For instance,

φ̂
(
P(σ)

)
=

∫
S

d2Q
√

3gS

{
K

[
P(σ),Q

]
π̂(Q) −K ′[P(σ),Q

]
φ̂(Q)

}
, (3.19)

where S is the two-dimensional surface given by the intersection of the past
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lightcone of P(σ) with any Cauchy surface; in particular, we can take the
intersection of the lightcone with the surface14 Στ̄=0. A similar construction
is possible for P(−σ), so we get

R(ω) = 2
∫ +∞

−∞
dτ e−2iωσFτ̄=0(σ), (3.20)
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〈
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d2Ω
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{
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}]2∣∣0〉. (3.21)

Thus, the detector excitation probability is expressed by the Fourier trans-
form of the expectation value Fτ̄=0(σ) with respect to σ. The field operators
that appear in Fτ̄=0(σ) are evaluated on the constant-time surface τ̄ = 0,
and they are integrated over the Märkze-Wheeler angular coordinates15 Ω.

In short, if we want to attribute the excitation of the accelerated de-
tector to the presence of particles in the accelerated frame, then we can
see that in some sense these particles reside on the surfaces of constant
Märzke–Wheeler time. The energy of the particles (as seen by the acceler-
ated detector) appears to be linked to some kind of radial frequency on the
surfaces. Furthermore, because of the symmetry of the system, it does not
matter which surface Στ ′ we choose to compute F (σ).

Our argument suggests that field quantization in Märzke-Wheeler coor-
dinates might yield a notion of accelerated particle that is consistent with
the measurements of accelerated detectors. Unfortunately, even writing (let
alone solving) the Klein–Gordon wave equation in Märzke–Wheeler coordi-
nates is fiendishly difficult.

Although the surfaces of constant Märzke–Wheeler time have a different
shape from the constant–Lorentz-time planes implicit in rigidly rotating
coordinates [Eq. (3.14)], the stationary Killing field used to translate the
surfaces toward the future is the same. As we have seen, this Killing field
becomes spacelike at large distances from the worldline. On the one hand,
this circumstance raises some doubts about field quantization in Märzke–
Wheeler coordinates, because the classical Cauchy problem for the wave
equation is not well posed16 when the time direction becomes spacelike (note
however that field quantization in rigidly rotating coordinates suffers from
the same problem).

On the other hand, Ashtekar and Magnon (1975) have shown that in
stationary spacetimes,17 field quantization is unique once we choose the

14The surfaces Στ̄ ′ are not always Cauchy surfaces for the entire spacetime, but they
always contain all the information necessary to reconstruct the value of the field at any
point along the worldline P(τ ).

15At least for the Klein–Gordon field, the propagator K is a function of σ only.
16Actually, to our knowledge, it is unexplored.
17A spacetime is stationary if it is endowed with a timelike Killing field. Minkowski

spacetime is stationary under any timelike combination of its ten Killing fields.
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Killing field that provides the definition of positive and negative frequen-
cies. If Ashtekar and Magnon’s result applied to the rotating case, then
Märzke–Wheeler quantization would be essentially equivalent to quantiza-
tion in rigidly rotating coordinates, so nothing would be gained. However,
Ashtekar and Magnon’s theorem requires a temporal Killing field that is
timelike everywhere. This leaves open the possibility that, for partially
spacelike Killing fields, quantization might depend on the specific shape of
the constant-time surfaces, so Märzke–Wheeler coordinates might provide
a solution to the inconsistencies between the laboratory version and the
intrinsic version of the Unruh effect.
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Chapter 4

The Conventionality of
Simultaneity

4.1 Conventionalism and geometry

At the beginning of the nineteenth century, the world of mathematics was
shaken by a momentous discovery: Bolyai, Lobatschewsky (and possibly
Gauss) built self-consistent geometries based on the negation of Euclid’s
axiom of the parallels, ending centuries of attempts to find a demonstration
for the axiom. For centuries, Euclid’s geometry had served as the model
itself of mathematical knowledge. Euclidian geometry was a strong palace
built on the self-evident truth of its foundations, the axioms; their strength
was propagated upward to the theorems, through the transparently reliable
process of logical inference. If Euclid’s axioms were not logically necessary,
according to Kant they could at least be regarded as inevitable.

Kant regarded space and time as the a priori pure forms of intuition
of all sensible entities, and therefore as the preconditions for the validity
of pure mathematics as a universal and necessary science; specifically, for
the validity of Euclidian geometry and kinematics as the sciences of space
and time. The actual structure and content of these disciplines could be
investigated in terms of apodictic a priori synthetic judgments, precisely
because they were not founded on the content of empirical acquaintance,
but instead on the a priori universal pure intuitions. At the same time, this
transcendental foundation accounted for the effectiveness of mathematics
in the natural sciences (Kant, 1781; Friedman, 1992). For these reasons,
the discovery of non–Euclidian geometries, rightly named the “Euclidian
catastrophe” (Longo, 1999, 2001), “dissolved the idea itself of geometry as
the univocal science of [physical] space, a fundamental idea that had always
been implicitly incorporated in physics.” (Pauri, 1997, p. 442)

Almost one century later, this philosophical tension was further increased
by the advent of Einstein’s theories of relativity. In his theory of special
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relativity (Einstein, 1905), Einstein showed by stringent reasoning that it
was necessary to abandon the absolute physical time of Newton (which,
just like Euclidian geometry, had been sanctioned by Kant as a descriptive
necessity, in the sense of being the quantitative expression of an a priori,
universal formal intuition) and replace it with a relative notion depending
on the state of motion of the observer; furthermore, in his theory of general
relativity (Einstein, 1915), Einstein accomplished an elegant description of
gravitation that required the geometry of spacetime (and therefore of space)
to be non–Euclidian.1

A number of thinkers [among them Riemann, Poincaré, Einstein himself,
Reichenbach, Quine and Grünbaum (see Grunbaum, 1973)], set about to
evaluate the philosophical and epistemological import of this revision in
the scientific understanding of geometry and time. With some important
distinctions, they converged on what came to be called the conventionalist
position.2 Just as Kant had suggested, they reasoned that physical theories
must be dictated in part by factual evidence, and in part by a priori, formal
and descriptive factors related to our conceptual organization of knowledge
and experiment. However, the conventionalists held that these factors were
by no means fixed: their choice was entirely conventional, suggested by
criteria of convenience or developed by historical contingency.

4.1.1 The conventionality of geometry

Consider for instance the measurement of lengths, of primary concern in
any discussion of geometry. A first convention, or coordinative definition
(because it coordinates a theoretical construct to a physical object) lies in
the choice of a physical unit of length, be it a metallic rod or the wavelength
of a certain atomic excitation, and in the assumption that its true length
remains constant with time. This assumption is not logically necessary,
and there is no way to test it: with respect to what can we judge that
the unit of length itself does not change with time? A second coordinative
definition lies in the assumption that the unit of length remains unchanged
when transported to another place; in other words, that measurements of
length do not depend on the location at which they are performed. These
considerations are not idle, because there could exist a universal force that
affects all objects, including the basic physical unit, by changing their true
length according to their location, or to time: in view of this, the notion of
true length becomes elusive, whereas the coordinative definition of length
with respect to the unit remains consistent (Reichenbach, 1928).

More to the point, given that different, unequivalent geometries are con-
ceivable, any question about the actual geometry of space is a physical ques-

1The possibility of modeling dynamics using a curved geometry of space, and not of
spacetime, had been explored earlier by Riemann (1867), without success.

2See (Norton, 1992) for a concise introduction.
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tion that requires experiment: but any such question can only be asked for
the joint construct of (coordinative definitions) + (universal forces). For ex-
ample, consider a curved, non–free-mobility, non–Euclidian geometry, where
all lengths are measured under the assumption that the unit of length is in-
variant by translation; in such a geometry, the circumference of circles is
not in general 2π times their radius. Now consider a flat, Euclidian geom-
etry where the true lengths are shrunk or enlarged at each location by an
appropriate universal force, in such a way that circumferences are always
measured to be 2π times their radius. These two geometries are indistin-
guishable by any possible experiment. Thus, neither of them can be held as
more true, or more natural than the other. In Reichenbach’s words (1928,
p. 18), “the geometrical form of a body is no absolute datum of experience,
but depends on a preceding coordinative definition.”

Do not misunderstand this popular example of the interplay between
coordinative definitions and universal forces: the latter are not extrane-
ous objects that are needlessly tacked on to simpler descriptions that could
stand on their own. It is especially clear that they are not if we extend our
scope from geometry to physical theories, where the universal forces should
be understood as implicit in the statement of the physical laws. A trivial
example is the coordinative definition of the right-handedness of a system of
axes, which can be chosen arbitrarily if the Lorentz force law (and whatever
else) is changed accordingly. To summarize, according to the convention-
alist strategy “theoretical schemes that are prima facie incompatible. . . are
accepted as interchangeable descriptions, relatively to different stipulations
about the coordinations which must be introduced, in the foundations of
physical theories, between mathematical elements and specific empirical el-
ements.” (Pauri, 1997, p. 442)

Two remarks are appropriate here. First, coordinative definitions have to
comply with a requirement of consistency: for example, the assumption that
a certain unit of length is invariant with time might prove inconsistent if two
such units, prepared in the same way and kept at the same spatial location,
are seen to disagree after some lapse of time. The test of consistency is
always an experimental matter.

Second: as a matter of practice, we cannot employ physical units uncrit-
ically, but we always need to make a series of corrections for the physical
disturbances and the experimental imprecisions that limit the invariance of
the units. That is, while we declare the unit of length to be the fundamen-
tal standard for our measurements, we recognize that we have to correct
it for all the local perturbations (in Reichenbach’s language, we can iden-
tify them because they act as differential forces, with different effects on
different objects.)

The idealized rigid bodies (rods), employed by Einstein to coordinate the
geometry of inertial frames, are especially vulnerable to differential distur-
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bances: the physical realizations of rigid bodies are solid objects, held to-
gether by complicated internal forces, and susceptible to thermal expansion,
gravity-gradient– and pressure–driven deformations, and so on. According
to Reichenbach (1928), solid bodies become rigid in the limit in which the
external (disturbing) forces are negligible with respect to the internal forces.

4.1.2 A critical viewpoint on conventionalism

More abstractly, physical units find their standard (and exacting!) idealiza-
tion as perfectly closed systems; but this closure can only be evaluated in the
general frame of the physical theory that we are building. This exception
exemplifies one of the strongest arguments in the modern criticism of the
conventional position: in a given physical domain, the distinction between
the basic perceptive content (the object of coordinative definitions) and the
theoretical constructs (which are induced from experiments and expressed in
the language of the coordinative definitions) depends on the physical theory
as a whole. Thus truly incompatible descriptive schemes are possible that
disagree not only on the coordinative definitions made on the same phys-
ical entities, but also on which entities can be the objects of coordinative
definitions (Pauri, 1997; Friedman, 1983).

This said, even for conventionalists not all coordinative definitions are
truly equal. Although the sieve of truth cannot be used to sift them, they
can be ranked according to the descriptive simplicity that they allow. To
take one of Reichenbach’s examples (Reichenbach, 1928), there is no point
in replacing the description of a straight cord with that of a curved one,
if a complicated universal force is then required to adjust the tension and
support the curvature of the cord. The second description would be just as
true as the first one, but much less useful. So even if all conventions are
equally true, often there is a strong criterion to choose which convention to
use in practice. This consideration is perhaps the most significant restriction
on the epistemic import of conventionalism.

Nevertheless, the influence of conventionalism remains paramount for
the whole field of the philosophy of spacetime: the conventionalist position
succeeded in rejecting the Kantian claim that the structure of space and
time was epistemically determined a priori ; more important, it highlighted
the status of space and time as legitimate (and inescapable!) objects of
physical investigation, rather than implicit, unquestioned infrastructures of
physical theories.

In the next sections, we shall examine closely the conventionalist claims
about the notion of time; these claims have a special historical interest
because they are prominent in Einstein’s original exposition of special rela-
tivity. In particular, we shall be concerned with Reichenbach’s discussion of
the conventionality of distant simultaneity, and with his definition of non-
standard synchrony.
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4.2 Conventionalism and time

According to Reichenbach (1928), there are three basic coordinative defini-
tions in the physical theory of time: the definition of the unit of time, the
assumption of the uniformity of time, and the stipulation of a criterion for
distant simultaneity.

The first two definitions are brought together by the definition of clocks.
Whereas the topological nature of time is immediately comprehensible to
our perception,3 its metrical qualities are not so directly accessible. In fact,
we never measure lapses of time, but only processes. Therefore, we base
the measurement of time on assumptions regarding the behavior of certain
physical systems, clocks, which we trust (or better, we define) to embody the
uniform unfolding of time.

These systems fall in two classes: closed periodic systems, such as watches,
atomic clocks, and the rotation of the Earth; and clocks based on the mea-
surement of distances,4 such as inertial clocks (clocks set in such a way that
isolated bodies will move through equal distances in equal times), or clocks
based on the movement of light. It is an experimental fact that both classes
of clocks converge to the same, consistent definition of time.

Much like length, uniform time is obtained from measured time after a
series of corrections, which take into account the imperfect closure of the
clocks, and the known imperfections in their periodicity (for the first class
of clocks) or uniformity (for the second class). Once again, these corrections
are possible only within the general frame of a physical theory, so it seems
untenable to follow Reichenbach in the distinction between natural clocks
and clocks based on the laws of mechanics. The consistency of a convention
for time can be tested only concurrently with the accuracy of the physical
laws that use that convention;5 the validation between clocks and laws is
reciprocal, and indeed circular.

4.2.1 The conventionality of simultaneity

We come finally to the third coordinative definition in the physical theory
of time: simultaneity. First, what do we mean by this notion? Aristotle
formalized our intuitive appreciation of time when he described the now

3According to different philosophical positions, the topological structure of time can
be identified either with the relation of temporal precedence of our experience, or with
the relation of causal propagation (causal priority).

4The current metrological practice assumes the exact opposite, defining the unit of
length from the unit of time, rather than the other way around. This is why the speed of
light is now defined, not measured.

5This argument is not the same as the basic conventionalist claim that coordinative
definitions are relative to the universal elements of physical laws: here the relevant physical
laws have a differential effect on the internal workings of the clocks and ultimately on their
supposed uniformity.
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(a) (b)

Newton Einstein

Figure 4.1: (a): Newtonian absolute simultaneity. (b): Relativistic causal
structure.

Because in special relativity the speed of light sets a finite upper limit for
the propagation of causal signals, for any event of spacetime there exists a
four-dimensional spacetime region (the elsewhere) which is causally disconnected.
Reichenbach and Grünbaum argue that the designation of a three-dimensional
simultaneity slice through the elsewhere is a conventional operation. In this figure,
time runs upward, space extends to the left and right.

as the locus that separates what has been from what is yet to be. Two
instants of time, experienced at distant locations (in short, two events),
are simultaneous when they share (or have shared, or will share) just that
special now (see Fig. 4.1a). Simultaneity is naturally conceived as a reflexive,
symmetric and transitive relation that partitions the universe of events into
classes; the events in each class share the same past and the same future
(Torretti, 1996).

At this point, you might have already realized why special relativity
jeopardizes this notion of simultaneity. We have just defined the now as the
interface between past and future. In Newtonian physics (and in Kantian
philosophy), past and future are obtained unequivocally from causality. If
the event A causes the event B (even partially), but B does not cause6 A,
then A precedes B. In Newtonian theories where infinitely fast signals (and
therefore, causal influences) are possible, this law of causality effectively
establishes7 simultaneity as an equivalence relation.

6That is, any change of the state of the world at A would affect B, but not vice versa.
7In fact, Kant identifies a second, direct criterion of simultaneity: A and B are simul-

taneous when they undergo continuous interaction. The typical example are Newtonian
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In special relativity, the law of causality defines the absolute past and
the absolute future of an event, but the union of these two regions does not
cover spacetime completely. Because the speed of light sets a finite limiting
velocity for the propagation of causal signals, for any event A there exists a
four-dimensional spacetime region Σ(A) which is causally disconnected from
A: that is, the events in S can neither cause A nor be caused by A. Ac-
cording to Grünbaum (1973), the relation between A and the entire Σ(A)
(topological simultaneity) is the only nonconventional definition of simul-
taneity possible in special relativity. It is clear that topological simultaneity
is not an equivalence relation; a coordinative definition is needed to cut a
slice of metrically simultaneous8 events through Σ (see Fig. 4.1b).

In operational terms, simultaneity is defined by statements about the
relative rate of distant clocks, and about their synchronization. When we
define clock time as uniform, we are making a statement about the compar-
ison of time lapses measured at the same location, but at different times.
In essence, because we have no way to check that today’s clock minute is
congruent to tomorrow’s clock minute, we define them as congruent. Now,
there are two related problems that force a conventional definition of simul-
taneity : first, there is no unique way to set the zero of distant clocks (that
is, to say that my local clock’s 8:00pm are truly simultaneous to your distant
clock’s 8:00pm); second, even when simultaneity is established for a couple
of events, there is no way to compare the time lapses measured by distant
clocks.9

Are these problems really unsolvable? Let us try this way: you and I
synchronize our clocks while we are sitting together,10 and after we satisfy
ourselves that both our clocks run uniformly and at the same rate, you move
away (see Fig. 4.2a). Then I can assume that the instants marked as 8:00pm,
8:01pm, . . . on my clock are simultaneous to the instants marked by the same
readings on your clock. Unfortunately, this is already a conventional defini-
tion (known as synchronization by clock transport), because I have no way of
knowing how the rate of your clock might change (by universal forces) once
you have left. Furthermore, we could verify that synchronization by clock
transport is not consistent, because it is an empirical fact that moving clocks
move slow with respect to stationary ones (Hafele and Keating, 1972a,b).

We then try to implement an altogether different strategy. While we
are at rest at a distance, I send you a message (for instance, I raise a sign)
asking you to send me your time. When your answer comes back, I use it
to synchronize my clock with yours. The catch is that our signals travel
with finite velocities, so I have to set my clock to the reading contained in

masses that are acting at a distance on one another.
8This is Grünbaum’s expression.
9The problems are related because rate of distant clocks could be compared by repeated

synchronizations.
10There is no convention in the synchronization of clocks which share the same location.
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(a) (b)

Clock Transport Einstein Convention

t2

t0

t1

t′0

Figure 4.2: (a): Clock-transport synchronization. (b): Einstein synchro-
nization.

Because in special relativity the relative rates of clocks depend on their velocity,
clock-transport synchronization proves inconsistent. Einstein proposed a con-
sistent synchronization procedure based on the exchange of light signals: the
time t2 on the white clock is chosen so that the white-clock event marked t0,
which lies halfway between the emission of the first signal and the reception of
the second, is simultaneous with the gray-clock event t′0 at which the first sig-
nal is received. In this figure, time runs upward, space extends to the left and right.

your message, plus the time that your message took to reach me: that is, I
can infer the time on your clock, if I know the velocity of our signals. But
to measure any velocity, we need first to secure two synchronized, distant
clocks, and that is just what we are trying to achieve! (We need one clock
to measure the time at departure, the other to measure the time at arrival.)
According to Reichenbach (1928), this circularity points to the need for a
coordinative definition of distant simultaneity.

Everything would be fine if only we could exchange signals that travel
with infinite velocity: in prerelativistic theories with infinitely fast signals it
is possible (at least in principle) to achieve nonconventional synchronization
simply by broadcasting instantaneous signals between distant clocks.11 So
the conventionality of simultaneity is a direct consequence of the empirical

11In fact, it is possible to employ the Einstein convention (with finite-velocity signals) in
a Newtonian physics, although there is an element of perversity in doing so (see Redhead,
1993; Zahar, 1977). On the other hand, even in special relativity one could consider the
use of superluminal signals, if they are available as tachyons, or as superluminal phonons
(Redhead, 1993).
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observation that there is a maximum speed for the propagation of causal
signals.

4.2.2 Einstein synchronization

Einstein was very aware of the problem of simultaneity, which plays a central
role in his seminal 1905 paper on special relativity. In this article, Einstein
seeks to reconcile two apparently incompatible principles: the time-proven
principle of Galilean relativity, by which the laws of physics cannot depend
on the absolute velocity of the frame of reference,12 and the light princi-
ple recently confirmed by Michelson and Morley, by which the speed of
light in vacuo does not depend on the state of motion of the source. To
accomplish this reconciliation, Einstein refuses to modify the equations of
electromagnetism; instead, he embarks in a conceptual criticism of the no-
tion of measurement (and therefore, of reference frame), whose final result
are the Lorentz transformations.

A cornerstone of Einstein’s criticism is the definition of a global time
coordinate such that the description of free motion satisfies Newton’s first
law: that is, an inertial time coordinate. Einstein understands that once a
fiducial clock is used to define time at a single spatial location, a convention
is needed to propagate that time throughout space. He first examines a
future-lightcone convention, by which the clocks (ideally) dispersed through
space are synchronized to the readings that they receive from the fiducial
clock by means of one-way light signals. With this convention, the surfaces
of constant coordinate time are the future lightcones with vertices on the
worldlines of the fiducial clock (see Fig. 4.3a; Fig. 4.3b shows a convention
that uses past lightcones). Einstein rejects this time coordinate13 because
is not invariant with respect to the spatial translations of the fiducial clock.
Furthermore, this time coordinate is not inertial! To see this, take an inertial
particle whose worldline intersects the worldline of the fiducial clock (see
Fig. 4.3c). As the particle passes by the clock, its velocity increases suddenly.

The article then goes on to introduce the Einstein (or standard) syn-
chronization convention. To illustrate it, let us sit by two distant clocks
at rest (see Fig. 4.2b). I note the time t1 of my clock and send you a light
signal; when you receive my signal, you immediately send back a light signal
bearing the time t′0 of your clock; I receive the second signal when my clock
reads t2. Einstein synchronization consists in setting my clock so that

t0 = t1 +
t2 − t1

2
= t′0; (4.1)

12More elegantly: no properties of phenomena correspond to the concept of absolute rest.
13Probably Einstein had introduced it only as an example to show that there are other

possibilities for the definition of time (Torretti, 1999).
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(a) (b) (c)

Figure 4.3: (a): Surfaces of simultaneity for the future-lightcone synchro-
nization. (b): Surfaces of simultaneity for the past-lightcone synchroniza-
tion. (c): Noninertiality of future-lightcone time.

In Fig. c, as an inertial particle (tilted line) passes by the fiducial clock (straight
line), the velocity of the particle increases suddenly, as we can see by projecting
the particle’s worldline on the spatial axis at regular lightcone-time intervals. In
this figure, time runs upward, space extends to the left and right.

that is, we stipulate that the event at which you receive my signal is simul-
taneous to the particular event on my worldline that lies halfway between
the emission of my signal and the reception of yours (see Figs. 4.2b, 4.4a).
Loosely speaking, we stipulate that you receive my signal halftime between
the moment I emit it and the moment I receive your answer. Let us repeat
this once again, but in terms that make contact with our previous discussion
of light-signal synchronizations (p. 47): Einstein synchronization is equiva-
lent to the assumption that the magnitude of the one-way speed of the light
signals in the two directions between the clocks is the same as the magnitude
of the two-way speed of light in the round trip.14

4.2.3 Reichenbach’s nonstandard synchronies

With his definition of inertial time and with the two fundamental principles
that he endorses, Einstein is then able to derive the Lorentz transformations
with all their consequences. But let us linger on Einstein’s convention, and

14Remember that actually measuring the one-way speed requires two synchronized
clocks!
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(a) (b)

P(t2)

P(t0)

P(t1)

Q

P(tε2)

P(t0)

P(tε1)

Qε

Einstein Reichenbach

Figure 4.4: (a): Standard (Einstein) simultaneity. (b): Nonstandard (Re-
ichenbach) simultaneity.

Both cases can be summed up by the formula t0 = t1 + ε(t2− t1), where ε = 1/2 for
Einstein synchronization, 0 < ε < 1 for Reichenbach synchronization. For ε < 1/2,
Qε moves to the future with respect to Q. In this figure, time runs upward, space
extends to the left and right.

see how it could have been set differently. Reichenbach (1928) argues that
instead of Eq. (4.1), we could have used any equation like

t0 = t1 + ε(t2 − t1) = t′0, with 0 < ε < 1. (4.2)

Note that if we took ε < 0 or ε > 1, we would locate the event at which you
receive my signal respectively before I sent it, or after I received your answer
(before or after in the metrical sense, of course). Reichenbach believed
instead that when causal ordering is defined, metrical time ordering should
agree with it. Apart from this, definition (4.2) is “adequate and could not
be called false. If the special theory of relativity prefers the first definition
[Einstein’s], i. e., sets ε equal to 1/2, it does so on the grounds that this
definition leads to simpler relations. It is clear that we are dealing here
merely with descriptive simplicity.” (Reichenbach, 1928, pp. 127)

So, what does Reichenbach (or nonstandard) simultaneity look like? To
see this, we shall start from Lorentz coordinates (whose constant–coordinate-
time surfaces are implicitly Einstein simultaneous), and examine the equa-
tions for the surfaces of constant Reichenbach time. Remember, Einstein
and Reichenbach synchronization are performed with respect to the inertial
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worldline P(t) of a fiducial clock, which we shall place at the Lorentz spatial
coordinates (x = 0, y = 0, z = 0); the coordinate time t will be the proper
time of the clock. Now consider the worldline Q(t), which is at rest with
respect to P(t), and which is described by (x = xQ, y = yQ, z = zQ). The
event Q(0), which is Einstein simultaneous to P(0), has t = 0.

Einstein synchronization implies that there exist two light rays that con-
nect P(t1) to Q and P(t2) to Q, with

t1 + (t2 − t1)/2 = 0, (4.3)

(t2 − t1)/2 = |Q − P(0)| =
√
x2 + y2 + z2 = r. (4.4)

The second condition follows from the description of lightcones in Lorentz
coordinates, setting c = 1. Solving the two equations, we get t1 = −r, t2 = r.
If we switch to Reichenbach’s synchronization, Eq. (4.3) becomest1 + ε(t2 −
t1)/2 = 0; the solution is tε1 = −2εr, tε2 = (1 − 2ε)r, and the event P(0) is
Reichenbach simultaneous with

Qε(0) :
(
t = (1 − 2ε)r, x = xQ, y = yQ, z = zQ

)
(4.5)

(see Fig. 4.4b). We can be general and let ε be a function of the spatial
position (x, y, z) and the fiducial time (measured along P(t)). Then the
transformation between Lorentz time and Reichenbach time is

t∗ = t+
(
1 − 2ε(t, x, y, z)

)
r. (4.6)

However, if ε is a function of time the actual implementation of the syn-
chronization protocol requires some nonobvious bookkeeping! Furthermore,
the constant-t∗ slices are in general curved, undulating surfaces with non–
Euclidian three-geometry (Fig. 4.5a). We can put some constraints on the
function ε(t, x, y, z) by forbidding that the constant-t∗ slices intersect, and
by requiring that the spatial directions on the slices stay really spacelike.
Then ε(t, x, y, z) must satisfy

∂ε(t, x, y, z)
∂t

<
1
2r

;∣∣∣(2ε(t, x, y, z) − 1
)xi

r
+ 2r

∂ε(t, x, y, z)
∂xi

∣∣< 1, with (xi = x, y, z).
(4.7)

The simplest choice for ε, and indeed the choice originally suggested by
Reichenbach (1928), is to take ε as constant and homogeneous. The resulting
constant-t∗ surfaces are hypercones with vertices along P(t) (Fig. 4.5b). The
time t∗, however, is not inertial (unless of course ε = 1/2, which corresponds
to the Einstein convention and to Lorentz time). The velocity of a free
particle passing through P(ti) will be discontinuous at t = ti, just as it
happened for Einstein’s future-lightcone convention (see Fig. 4.3c); indeed,
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(a)

(b)

(c)

Figure 4.5: Reichenbach-simultaneous slices of spacetime.

(a) For a generic function ε(t, x, y, z), the surface t∗ = 0 is curved.

(b) A constant and homogeneous ε yields a foliation of spacetime into hypercones
(in this case, 0 < ε < 1/2).

(c) The requirement that the time coordinate be inertial yields modified Reichen-
bach time (4.8), which is simply the Lorentz coordinate time of an inertial
worldline in motion with respect to our fiducial worldline.

In this figure, time runs upward, space extends to the left and right.

Reichenbach’s synchronization reproduces the future-lightcone convention
for ε = 1.

Indeed, if viable synchronization procedures must yield inertial time
coordinates [as in the spirit of Einstein’s original discussion (1905)], then
Reichenbach synchronization must be restricted to the form (Torretti, 1996)

t∗ = t+
(
1 − 2ε′

)
n̂ · r, (4.8)

where ε′ is a constant, and n̂ is a fixed unit vector.15 Eq. (4.8) expresses
what Torretti (1999) calls modified Reichenbach time: that is, Reichenbach
synchronization (4.2) with ε = ε′ for points that lie in the direction n̂ from
P(t); with ε = 1− ε′ for points that lie along −n̂; and with ε = 1/2 (Einstein
synchronization) for points that lie in the directions orthogonal to n̂. It turns

15Eq. (4.8) is a special case of Eq. (4.6): just take ε(x, y, z) = 1/2(1 − ε′′n̂ · r), with ε′′

a constant.
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out that if we adopt Eq. (4.8), then we are essentially using (except for a
multiplicative constant) the Lorentz coordinate time of a frame that moves
with velocity (2ε′ − 1)n̂ with respect to P(t) (Fig. 4.5c). In other words, in
any given frame the only nonstandard synchronies that are compatible with
the law of inertia coincide with the standard synchrony of other (boosted)
frames. Torretti’s trenchant comment is that “modified Reichenbach time
is . . . maladapted Einstein time” (1999, p. 277).

4.2.4 A physical critique of nonstandard synchrony

The strongest criticism against the conventionality of simultaneity is cer-
tainly the charge that Reichenbach and Grunbaum failed to realize how
central Einstein synchronization is to the entire edifice of special relativity.

This centrality is evident from several points of view. First, we have
seen that synchronization by clock transport proves to be inconsistent in
special relativity, because the relative rates of clocks change according to
their speed. However, synchronization by infinitely slow clock transport16 is
perfectly viable, as was first realized by Eddington (1924). It turns out that
infinitely slow clock transport is exactly equivalent to Einstein simultaneity
(Friedman, 1977, 1983; Torretti, 1996). The only assumption underlying
the slow–clock-transport convention is that clocks measure the proper time
along their worldlines:

dτ =

√
ηij
dxi

dλ

dxj

dλ
dλ. (4.9)

Thus, adopting nonstandard synchronism means having to change Eq. (4.9),
“which is perhaps the central explanatory principle of special relativity.”
(Friedman, 1983, p. 317) Since Eq. (4.9) can be seen as the consequence of
a convention, it cannot be tested directly; “but it is about as well confirmed
as a theoretical principle can be.” (Friedman, 1983, p. 317)

Second, standard synchronization is closely intertwined with Einstein’s
light principle, which sanctions the assumption that the one- and two-way
speeds of light are the same, but which is true only under Einstein time. To
establish his convention,

Einstein picks a swarm of bouncing photons issuing at a partic-
ular instant from a point in an inertial frame. His definition of
time implies that these photons move with the same speed in
every direction. But once Einstein time is fixed in an inertial
frame, all other photons bear witness to the validity of the light
principle in that frame. (Torretti, 1999, p. 273)

16Defined as the limit of a sequence of synchronization procedures in which the clocks
are moved from the origin with progressively slower speeds.
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And, we add, they bear witness to the consistency of standard simultaneity.
Thus, the exceedingly successful experimental verification of special rela-
tivity upholds the combination of Einstein synchronization and of the light
principle. Give up one of them, and the other falls too.

Third, and most important, standard simultaneity is explicitly definable
from the conformal structure of Minkowski spacetime, that is, from causal
relations alone. This fact was implicit in the axiomatic systems given for
Minkowski geometry by Robb (1914) and by Mehlberg (1935; 1937), and in
Zeeman’s representation theorem (Zeeman, 1964; Torretti, 1996), but it was
finally brought to the attention of most philosophers of science by Malament
(1977). We shall examine Malament’s paper closely in Sec. 4.2.6, but let us
first briefly comment on Zeeman’s theorem.

Minkowski spacetime can be defined axiomatically as a causal space:17

that is, for any two events of spacetime we can say whether one of them
causally precedes the other, or whether they are causally disconnected. A
causal automorphism is a mapping of a causal space into itself that preserves
these causal relations. Zeeman’s theorem states that the causal automor-
phisms of Minkowski spacetime are the Lorentz transformations and the
dilatations. Under the assumption that Minkowski spacetime is flat, this
result implies that the causal structure determines the metric up to a scal-
ing factor. But we know that Einstein time is crucial to the definition of
Lorentz frames (which are especially adapted to the Minkowski metric) and
of Lorentz transformations (which are the symmetry group of Minkowski
spacetime, and the isometries of the Minkowski metric): therefore, causal-
ity confers a very special status to standard simultaneity.

All these arguments strongly suggest that “standard simultaneity . . . is
explicitly definable from the other quantities of relativity theory: it cannot
be varied without completely abandoning the basic structure of the theory.”
(Friedman, 1983, p. 320) Not only the adoption of nonstandard synchrony
casts a shadow on the explanatory power of some of the central tenets of
special relativity, but it requires the addition of the ε field to Minkowski
spacetime. This extra structure serves no explanatory purpose.

Consider for instance a reformulation of special relativity in terms of
modified Reichenbach time (which at least salvages the inertial character of
the time coordinate): Winnie (1970) proves that such a theory is kinemat-
ically equivalent to special relativity, in the sense that it makes the same
physical predictions of special relativity in a different language (one with
very punishing formulas). However, Winnie’s work falls short of vindicat-
ing Reichenbach’s claim that distant synchronization is conventional: as
Friedman points out (1977; 1983), the generally covariant formulation of
special relativity makes it possible to adopt any coordinate system (and not
just modified Reichenbach systems), and still live up to kinematical equiva-

17See Kronheimer and Penrose (1967); for a simple exposition, see Torretti (1996).
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lence. Indeed, “if Winnie’s equivalence claim is to have any real content . . . it
should say something about the intrinsic spacetime structures described by
our theory, not just about the different coordinate systems in which these
structures are represented.” (Friedman, 1983, p. 175)

Instead, nonstandard-synchrony reformulations of special relativity serve
the only purpose of cloaking the physical content of the theory under a layer
of unnecessary descriptive complication; furthermore, this layer depends
completely on the arbitrary (and unphysical!) specification of ε throughout
spacetime.

4.2.5 A philosophical critique of nonstandard synchrony

To these arguments Reichenbach might of course answer that the advantage
of standard synchrony resides only in the greater descriptive simplicity that
it affords, and in nothing else. We can raise at least two objections to this
defense. According to Friedman,

Reichenbach argues from an epistemological point of view; he
argues that certain statements are conventional as opposed to
“factual” because they are unverifiable in principle. . . . the main
problem with Reichenbach’s argument is this: whether or not
statements about distant simultaneity are in some sense unveri-
fiable in the context of special relativity, we have been given no
reason to suppose that unverifiability implies lack of determinate
truth value. (Friedman, 1977, pp. 426–428)

In other words, we are entitled to claim that standard synchrony yields a
truthful description of physical time, even if we have to recognize that si-
multaneity is not directly verifiable. Furthermore, as underlined by Norton,
conventionalists must try to avoid the pitfall of an

indiscriminate antirealism in which any law is judged conven-
tional if the law fails to entail observational consequences with-
out the assistance of other supplementary laws. . . . The Duhem–
Quine thesis . . . states that it is impossible to test the individual
laws of a theory against experience. We can only test the entire
theory. Any attempt to test individual laws will fail since we can
always preserve any nominated law from falsification by modi-
fying the other laws with which it is conjoined when we derive
observational consequences from it. (Norton, 1992, p. 189)

To this point, most conventionalists would counter that we can speak mean-
ingfully of conventionality only in those cases where

conventionality depends on a very small vicious circle that must
be broken by definition since no independent factual test is pos-
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sible for the individual components of the theory. The Duhem–
Quine thesis does not restrict the manner in which we might
protect a law from falsification. We might have to do so by a
complicated and contrived set of modifications spread through-
out the theory. Some of the components modified may be subject
to independent test and thus not properly susceptible to conven-
tional stipulation. (Norton, 1992, p. 189)

We believe that the physical arguments presented in the last section are
sufficient to establish that the vicious circle involved in the definition of
distant simultaneity is not small, but it encompasses almost all of special
relativity.

Grünbaum’s position (1973) appears even weaker. As we have briefly
seen in Sec. 4.2.1, Grünbaum does not take issue with the verifiability of
what he calls metrical simultaneity; rather, he maintains that the only non-
conventional notion of simultaneity is topological simultaneity, which can be
defined directly from causal relations (whereas metrical simultaneity cannot
be so defined). Grünbaum’s conviction fits his version of the causal theory of
time,18 where the only objective temporal relations are the causal relations
between events. This ontological position can be criticized easily: it is not
at all clear that the list of the objective properties of the physical world can
be drawn a priori, rather than being compiled on the basis of the best avail-
able physical theories (Friedman, 1983). Whereas Grünbaum’s objections
of principle are suspicious, he is plainly wrong on matters of fact: as we
have seen, Einstein simultaneity is definable entirely from causal relations.
In fact, it is the only nontrivial simultaneity relation that is so definable,
and so it must be considered nonconventional by right. This is the upshot
of Malament’s 1977 theorem (Malament, 1977), which is the subject of the
next section.

4.2.6 Malament’s argument: simultaneity from causality

In his 1977 paper, Malament expands some arguments due to Robb (1914),
proving how standard simultaneity is essentially orthogonality in Minkowski
spacetime, and how that orthogonality can be defined from causal relations
alone. To show this we need first to establish a connection between causal
relations and the affine structure of Minkowski spacetime. It is a basic as-
sumption of special relativity that the causal structure of Minkowski space-
time is encoded in the Minkowski inner product of two events,

(P,Q) = −t[P]t[Q] + x1[P]x1[Q] + x2[P]x2[Q] + x3[P]x3[Q] (4.10)

(although this expression makes recourse to Lorentz coordinates, it is of
course Lorentz invariant). The three symmetric relations of causal con-

18For the causal theory of time, see (van Fraassen, 1985).
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nectibility (κ), timelike relatedness (θ), and lightlike relatedness (λ) are then
defined by

PκQ iff |P − Q| = (P − Q,P − Q) ≤ 0,
PλQ iff |P − Q| = (P − Q,P − Q) = 0,
PθQ iff PκQ & ¬PλQ;

(4.11)

with some cleverness, it is actually possible to use any one of κ, θ, and λ to
define the other two (Malament, 1977, Note 3), and even to reconstruct the
full inner product (Robb, 1914). Now, standard simultaneity with respect to
the inertial worldline P(τ) is defined as follows: Q is Einstein simultaneous
to P0 ∈ P(τ) iff there exist two other events P1, P2 on P(τ) such that

(P0 − Q,P2 − P1) = 0. (4.12)

Since the Minkowski inner product can be defined from κ, so can standard
simultaneity. To see that the relation implied by Eq. (4.12) is really standard
simultaneity, let us rephrase Eq. (4.2) as

P0 = P1 + ε(P2 − P1); (4.13)

we insert this definition into Eq. (4.12):

0 =(P0 − Q,P2 − P1) =
=

(
P1 + ε(P2 − P1) − Q,P2 − P1

)
=

=ε|P2 − P1| + (P1 − Q,P2 − P1) = 0;
(4.14)

by our operational definition of synchronization, we have P1λQ and P2λQ;
hence,

0 =|P2 − Q| = |P2 − P1 + P1 − Q| =
=|P2 − P1| + 2(P1 − Q,P2 − P1) + |P1 − Q| =
=|P2 − P1| + 2(P1 − Q,P2 − P1) = 0.

(4.15)

Combining the last lines of Eqs. (4.14) and (4.15), we get (ε−1/2)|P2−P1| =
0, which implies that ε = 1/2, as appropriate for the standard synchroniza-
tion convention.

Malament is then able to prove that standard synchronization is the only
nontrivial simultaneity relation that can be defined from κ and P(τ). He
does so by imposing three conditions on any candidate simultaneity relation
S:

1. S must be an equivalence relation;

2. S must relate events on P(τ) to events not on P(τ), but S cannot be a
universal relation that relates every event of spacetime to every other
event (nontriviality);
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3. S must be preserved under the P(τ) causal automorphisms (the map-
pings of Minkowski spacetime onto itself that also map the worldline
P(τ) onto itself).

The third condition is crucial, and it seems a necessary consequence of defin-
ing S from κ and P(τ) alone: any transformation that leaves κ and P(τ)
unaltered should also map simultaneous points into simultaneous points.

We will give only a brief sketch of Malament’s proof.19 The P(τ) causal
automorphisms include all the rotations, translations, scalar expansions and
reflections which map P(τ) onto itself. Consider two events P0 ∈ P(τ) and
Q 6∈ P(τ) which are simultaneous under S [briefly, S(P0,Q)]. Let ΠP0 be the
set of the P(τ) causal automorphisms that have P0 as a fixed point; now let
ΠP0(Q) be the set of all the events obtained by applying the elements of ΠP0

to Q. The events in ΠP0(Q) are all S simultaneous with P0 and with each
other. If P0 and Q are simultaneous under the standard simultaneity relation
S0, then ΠP0(Q) is just the hypersurface orthogonal to P(τ) that contains
P0. If they are not, then ΠP0

(Q) is a double cone (but not necessarily a
lightcone!) with vertex P0. In this case, we can prove that S(P0,R) for all
the events R of spacetime, so S must be universal. Let us see how.

Suppose first that R ∈ P(τ). There is a P(τ) causal automorphism f
which maps P0 onto R, and Q into f(Q). The catch is that the double cone
ΠR(f(Q)) must intersect the double cone ΠP0

(Q) at some event S; because
S is an equivalence relation, S(P0,S) and S(R,S) imply S(P0,R). Suppose
now that R 6∈ P(τ). Then there is a P(τ) causal automorphism g which
maps Q onto R. Since g preserves S, we have S(g(P0), g(Q)), or S(g(P0),R).
But g(P0) ∈ P(τ), so the first part of this paragraph can be used to prove
that S(P0, g(P0)); therefore S(P0, R). The idea is that if S shares a couple
of simultaneous events with S0, then it contains S0; but if S has a couple of
simultaneous events that are not in S0, then S must be the universal relation.
Ultimately, S can only be empty, universal, or S0. If S is nontrivial, then S
is S0.

Sarkar and Stachel (1999) criticize Malament’s proof because it includes
a crucial assumption “that is physically unwarranted: any simultaneity re-
lation must be invariant under temporal reflections.” (Sarkar and Stachel,
1999) If this assumption is dropped, both the future-lightcone convention20

and the specular past–lightcone convention become as viable as standard
synchronization. Already in 1981, Spirtes had realized that Malament’s re-
sult was vulnerable to losing even one of the requirements of invariance.
However, why drop temporal reflections? Sarkar and Stachel’s argument
comes down to the claim that only the proper orthochronous subgroup of

19Other than Malament (1977), see (Norton, 1992; Anderson et al., 1998); for a beautiful
geometric characterization, see (Redhead, 1993).

20As we already wrote (Sec. 4.2.2) Einstein did consider briefly this convention in his
1905 article.
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Lorentz transformations can be realized physically.
Rynasiewicz (2000) rejects Sarkar and Stachel’s claims very firmly. First

of all, temporal reflections cannot be rejected for physical reasons, because
under any accepted sense of definability S must respect all the symmetries
shared by the entities from which it is defined; in this case, S must respect
all the P(τ) causal automorphisms. “What relations are definable from what
is not a matter of physical adequacy, but rather is a purely formal, mathe-
matical question.” (Rynasiewicz, 2000) Second, Rynasiewicz is able to show
that Sarkar and Stachel’s reasoning is flawed when they purport to prove
that the future and past lightcones emanating from an event are definable
from causal relations alone; they are not, although for very technical reasons
(Rynasiewicz, 2000).

4.2.7 A final word on the conventionality of simultaneity in
special relativity

According to other authors, Malament’s theorem is correct, but it falls
short of proving that standard simultaneity is nonconventional (Redhead,
1993; Anderson et al., 1998). For instance, we can circumvent the theo-
rem by accepting notions of simultaneity that are not relations of equiva-
lence (Redhead, 1993). Alternatively, we can realize that in a given inertial
frame, we are free to use the standard synchrony defined in all other inertial
frames (Janis, 1983; Debs and Redhead, 1996); from the point of view of
Malament’s theorem, this would mean that some additional structure other
than λ and P(τ) (another worldline P′(τ)) is used to define S.

In this author’s opinion, Malament’s result seals conclusively the ar-
guments outlined in Secs. 4.2.4 and 4.2.5, which suggest that within the
framework of special relativity, standard simultaneity should be regarded as
nonconventional because it is intimately tied to the physical content of the
theory; indeed, adopting nonstandard simultaneity seems to contradict that
physical content, or at least to obscure it beyond a layer of arbitrary descrip-
tive complication. True, we must impose some requirements on simultaneity
before we can regard it as truly nonconventional: for instance, the time co-
ordinate must be inertial, and simultaneity must be an equivalence relation;
but these requirements serve a precise and fundamental purpose within spe-
cial relativity. Indeed, if we lift these constrictions, we gain much latitude
in the definition of synchrony, but we do not enlarge the scope of special
relativity, or provide any further physical insight—if anything, we get less!
Ultimately, as Rynasiewicz correctly notes,

neither Reichenbach nor Einstein would have accepted [the claim
that temporal relations are nonconventional if they are definable
uniquely in terms of causal connectability]. The question for
them was not what we are at liberty to say about distant simul-
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taneity after the theory of relativity is given, but rather to what
degree one is constrained prior to the articulation of the theory.
(Rynasiewicz, 2000)

Nevertheless, the whole debate on these issue has never strayed very far
from the bounds of special relativity! Maybe Rynasiewicz is right when
he writes that because of this, “most of the discussions [of nonstandard
synchrony] simply miss the mark” (Rynasiewicz, 2000); but we could not
agree more with Torretti when he states: “Restriction of the [simultaneity]
rule to special relativity inevitably curtails the philosophical significance of
Reichenbach’s doctrine; but without this restriction it is far too indefinite
to be argued for or against.”(Torretti, 1996, p. 223)

4.3 Einstein’s synchronization beyond inertial ob-

servers

In Ch. 3 we discussed the extension of the Einstein synchronization con-
vention to noninertial observers, and we used the extended convention to
build a system of accelerated coordinates (Märzke–Wheeler coordinates)
adapted to the motion of a generic accelerated observer in Minkowski space-
time. Märzke–Wheeler coordinates display the following desirable prop-
erties: (a) on the worldline of the fiducial observer, the Märzke–Wheeler
time coordinate coincides with the observer’s proper time; (b) furthermore,
in a neighborhood of the worldline, Märzke–Wheeler coordinates reduce to
Lorentz coordinates; (c) the procedure assigns smoothly and unambiguously
a Märzke–Wheeler time and a Märzke–Wheeler radial coordinate to all the
events that lie in the causal envelope of the worldline.21 Most important,
Märzke–Wheeler time indexes a smooth foliation of the causal envelope into
spacelike surfaces of simultaneity.

In the context of this chapter, one question then becomes natural: to
what extent is the choice of Märzke–Wheeler time for accelerated observers
conventional? To provide an answer, we will first have to make some distinc-
tions between the notions of coordinate set, reference frame, and observer,
which we have used somewhat loosely in the rest of this work. We will
then move on to examine which factual and which conventional elements
are required by the Märzke–Wheeler procedure.

4.3.1 Coordinate systems, reference frames, and observers

In the standard expositions of special relativity it is customary to blur the
distinction between the notion of coordinate system and that of frame of

21In Sec. 3.3 we defined the causal envelope of a worldline as the intersection of its
causal past and its causal future. The causal envelope contains all the events from which
bidirectional communication with the worldline is possible.
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reference. “The first . . . is understood simply as the smooth, invertible as-
signment of four numbers to events in spacetime neighborhoods. The sec-
ond . . . refers to an idealized physical system used to assign such numbers.”
(Norton, 1993)

In special relativity, a reference frame is traditionally conceived as a
regular lattice of identical rigid rods, at rest relatively to each other, plus a
set of ideal clocks; the lattice and the clocks are distributed homogeneously
throughout space. Using Reichenbach’s terminology (Reichenbach, 1928),
we may say that the special-relativistic notions of distance and time are
coordinated to the rods and clocks,22 so we read the clocks to know the
time and we count the rods to measure distances. Lorentz coordinates are
adapted to the standard reference frames of special relativity, so they have an
immediate metrical significance: they are not simply arbitrary event labels,
but they give measures of length and time according to the coordinative
definitions adopted for the rods and clocks.

Two remarks are appropriate here. First, a definite state of (inertial)
motion is associated to each reference frame; as a matter of fact, whenever
we say that some notion is relative in special relativity, we mean it with
respect to reference frames in different states of inertial motion. As a set
of active transformations, the Lorentz group modifies the state of motion of
frames; as a set of passive transformations, it provides mappings between the
Lorentz coordinate systems adapted to frames in different states of motion.

Second, because of the homogeneity of Minkowski spacetime, we only
need one inertial worldline to specify a reference frame: for instance, we can
take the trajectory of the origin of the frame. We obtain the trajectory of all
the other lattice points by parallel transport of this fiducial worldline. This
circumstance has encouraged the identification of the notion of reference
frame with that of inertial observer (who lives on a single worldline). It
follows that the equations of physics, as expressed in a Lorentz coordinates,
are naturally understood as referring to the measurements made by a single
inertial observer.

This is not strictly true, because obviously an observer can measure
quantities only along her own worldline. Yet the attribution of a global co-
ordinate system to a local observer still seems very reasonable. In Sec. 3.1,
we remarked that for inertial observers, Lorentz coordinates are a device
to extend the concept of physical reality from the worldline to the entire
spacetime, building a description of the world which incorporates notions of
distance, and simultaneity. To extend her physical reality, the observer ex-
ploits the homogeneity of Minkowski spacetime, envisaging a homogeneous,
space-filling population of her clones, each one of them armed with a clock.
After all the clocks are synchronized, the clones begin making measurements

22Whether this coordination has a conventional character is what we have been dis-
cussing for the last 20 pages.
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and exchanging data. The resulting physical picture obeys the equations of
physics as written in the Lorentz coordinate system adapted to the original
frame (and therefore to the original observer).

As soon as we abandon inertial reference frames, this tight integration
among frames, coordinates, and observers begins to break apart (Norton,
1993). With the introduction of uniformly accelerated frames, coordinate
time ceases to correspond directly to the measurements of clocks; with uni-
formly rotating frames, spatial geometry becomes non–Euclidian, so the
direct coordination of spatial coordinates to rigid rods breaks down. Going
on to curved spacetimes, it becomes impossible to specify coordinate sys-
tems that have metrical value everywhere; moreover, our imagination would
be severely strained by the attempt to devise a global reference frame based
on some generalization of a lattice.23

It seems that the years have brought consensus (Norton, 1993) around
the definition of a general-relativistic reference frame as a spacetime-filling
congruence of curves,24 which are typically timelike geodesics. We can imag-
ine that one observer lives on each such curve, carrying a clock and maybe a
gyroscope (mathematically, this corresponds to specifying a tetrad field over
spacetime; one vector of the tetrad points along the proper time direction).
We can then define an adapted coordinate system (Fermi coordinates) by
setting coordinate time to proper time, and fixing each of the curves of the
congruence to constant spatial coordinates. In any case, the choice of a sin-
gle geodesic observer is now insufficient to specify a reference frame. Indeed,
we need a population of observers who cannot be cloned from each other by
parallel transport.25

4.3.2 Elements in the definition of Märzke–Wheeler simul-
taneity

Let us go back to the Märzke–Wheeler construction of Ch. 3. Our pur-
pose there was to define an accelerated coordinate system adapted to the
motion of a generic accelerated observer in Minkowski spacetime. Mind
you, a coordinate system, not a reference frame! For how could we devise
a frame that is adapted to a single noninertial observer? We could try to
link the observer to some kind of rigid, space-filling structure: but in spe-
cial relativity it is impossible to accelerate extended rigid bodies without

23At the very least, it will become necessary to support the lattice at various points (for
instance with rockets), and to counteract the stresses induced by curvature. Of course
these tricks negate the spirit itself of setting up reference frames, which is to identify
simple, reliable physical objects or procedures that can be safely coordinated to theoretical
constructs.

24A set of curves that fill up spacetime without intersecting.
25At least in general. Sometimes curved spacetimes have enough symmetry to suggest

a geometrically obvious (and in some sense, homogeneous) family of curves. One example
are Robertson–Walker spacetimes, studied in cosmology (Torretti, 1996).
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deforming their structure (Rindler, 1977). Alternatively, we could imagine
a space-filling population of clones of the fiducial observer: but we have no
unique prescription on how to replicate the original worldline throughout
spacetime. A possible geometrical prescription could use the symmetries of
Minkowski spacetime to suggest the geometry of replication; but it would
fail to produce a frame adapted to the accelerated worldline, which does not
share those symmetries.

Instead, we can define Märzke–Wheeler coordinates entirely from oper-
ations that the accelerated observer can carry out on her own worldline.
Admittedly, she still needs the collaboration of other observers (or devices)
distributed throughout spacetime, to send her the results of their measure-
ments and to complete the Einstein triangulation of light signals: but she
does not need to know anything about the trajectory of those other observers.
So the only elements that really come into the definition of Märzke–Wheeler
simultaneity are the accelerated worldline, the causal structure of Minkowski
spacetime (implicitly, through the exchange of light signals), and one ideal
clock that marks proper time along the worldline.

It seems that the situation here is not much different from what it was for
the standard synchronization of inertial observers. Before concluding that
Märzke–Wheeler simultaneity is also nonconventional, however, we should
note that Märzke–Wheeler time is not inertial : as the curved geometry
of the Märzke–Wheeler simultaneity slices might already suggest, inertial
bodies will not move through equal distances in equal times (in fact, their
trajectories will not even be straight lines in Märzke–Wheeler coordinates!)
We should not be surprised that this is the case: from Newtonian physics,
we are all used to the apparent forces that come into the equations of physics
when these are written in accelerated frames. Much in the same way, the
description of physics in the accelerated Märzke–Wheeler coordinates is im-
plicitly a function of the acceleration of the worldline, which enters the
description as an absolute object in the sense of Anderson (1967). “Roughly
speaking, an absolute object affects the behaviour of other objects but is
not affected by these objects in turn.” (Anderson, 1969, p. 1657).

4.3.3 An aside on the notion of absolute objects

It is worth to spend a few lines to discuss Anderson’s absolute objects
(Anderson, 1967), just because they are a very interesting notion on their
own. The Minkowski metric of special relativity is an absolute object be-
cause it affects the behaviour of other physical objects, the dynamical objects
of the theory (for instance, it determines the trajectories of free bodies); but
it is not affected by the dynamical objects in the way that, for instance, the
general relativistic metric is: as a matter of fact, Anderson would say that
general relativity is a theory without absolute objects.

Absolute objects are the basis for Anderson’s distinction between the



BEYOND INERTIAL OBSERVERS 65

covariance group of a theory and its symmetry or invariance group. The
dynamical objects of the theory transform under the covariance group; the
absolute objects also transform under the covariance group, assuming dif-
ferent forms as they do so, but they are always essentially the same. The
symmetry group is the subgroup of the covariance group that leaves invariant
the absolute objects.

Let us take special-relativistic field theory as an example: the field φµ

transforms under the Poincaré group as a four-vector; under the same group,
the Minkowski metric ηµν transforms trivially like a two-tensor, because it is
invariant. So the Poincaré group is both the covariance group and the sym-
metry group of the theory. Now take the same special-relativistic classical
field theory, in a generally covariant form where general coordinate trans-
formations are allowed. Here φµ transforms like a vector, and ηµν really
transforms like a two-tensor, in the sense that under appropriate transfor-
mations, it might become nondiagonal, its determinant might change, and
so on. Nevertheless, ηµν is still invariant under Poincaré transformations. So
the general group of diffeomorphisms is the covariance group of the theory,
but the Poincaré group is still the symmetry group.

Because there are no absolute objects in general relativity, its symme-
try group coincides with its covariance group, the general group of diffeo-
morphisms. In this admittedly formal sense, general relativity succeeds in
generalizing the relativity of the special theory from the inertial coordinate
systems related by Lorentz transformations to the general coordinate sys-
tems related by generic diffeomorphisms.

But let us go back to Märzke–Wheeler simultaneity. For any physical
theory expressed in Märzke–Wheeler coordinates, the accelerated trajec-
tory of the fiducial observer will be an absolute object, on a par with the
Minkowski metric, because together they determine the 3-metric on the
Märzke–Wheeler simultaneity slices. One could imagine a covariant version
of this accelerated theory where the basic Märzke–Wheeler coordinates are
transformed to some functions of themselves, while the 3-metric transforms
accordingly. However, because a generic accelerated worldline shares no
symmetry with the Minkowski metric, the symmetry group of the covariant
accelerated theory will contain only the identity.

4.3.4 The conventionality of Märzke–Wheeler simultaneity

What about the conventionality of Märzke–Wheeler simultaneity, then? We
have shown how this synchrony can be defined from a minimal set of elements
(causal structure, the accelerated worldline, proper time), and we have come
to regard the noninertiality of Märzke–Wheeler time as inevitable. Now con-
sider a Reichenbach–Märzke–Wheeler synchrony where the time coordinate
is defined as τ̄ ε = τ1 + ε(τ2− τ1), with ε 6= 1/2 (see the discussion in Sec. 3.3
for the original definition of τ̄). Here ε could be a constant, or it could be a
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function of σ and of the angular coordinates θ, φ. Such a convention can be
defined from the same minimal set of elements that we just discussed, plus
the arbitrary scalar field ε(σ, θ, φ). What distinguishes the Reichenbachized
convention from plain Märzke–Wheeler synchrony? Why should we prefer
the latter, if both yield noninertial time coordinates?

Unfortunately, when we extended our attention to accelerated observers
we effectively walked out of special relativity, so we cannot use the argu-
ments of Sec. 4.2.4, which show that standard simultaneity is intimately
linked with fundamental aspects of special relativity. Neither can we appeal
to Malament’s theorem: none of the symmetries that preserve the causal
structure of spacetime preserves a generic accelerated worldline. In Mala-
ment’s language, the only P(τ) causal automorphism is the identity: so
the Märzke–Wheeler simultaneity slices cannot be obtained from the causal
automorphisms, and the proof collapses.

Nevertheless, we still have some grounds for rejecting Reichenbach–
Märzke–Wheeler synchrony. It might be possible to show that a partic-
ular choice of the ε(σ, θ, φ) field serves a specific explanatory purpose: for
instance, there could be a choice of ε(σ, θ, φ) under which Reichenbach–
Märzke–Wheeler coordinates satisfy some desirable properties on top of the
ones outlined at the beginning of Sec. 4.3. If this is not the case, then
ε(σ, θ, φ) is just a spurious absolute object which should have no business in
the definition of synchrony. So far, we have not been able to think of any
especially useful definition of ε(σ, θ, φ).

What about a constant ε? Surely a single real number is inoffensive
enough, even if it is an absolute object! Maybe not. One of the desirable
properties of Märzke–Wheeler coordinates was that they reduce to Lorentz
coordinates in a neighborhood of the observer’s trajectory (a neighborhood
small enough that the trajectory looks approximately inertial). If we want
this property to survive, then ε must be 1/2, which gives the plain Märzke–
Wheeler simultaneity. Indeed, this property should survive, because in
essence it says that accelerated simultaneity reduces to the nonconventional
simultaneity of special relativity where the effects of acceleration are small
enough to be neglected.

Ultimately, it appears that our discussion brought us to a tentative ver-
dict of nonconventionality even for the extension of Einstein synchronization
to accelerated observers.



Appendix A

Derivation of a Constant
Homogeneous Flat Metric

We reproduce here Rohrlich’s derivation (1963) of the metric appropriate
to a constant homogeneous gravitational field. We begin from the most
general Lorentzian metric gµν . Staticity implies that the time coordinate
can be separated and the metric written as

ds2 = −gtt dt
2 + gij dx

idxj ; (A.1)

where no coefficient depends on t. We can now diagonalize the spatial metric
and impose homogeneity along coordinates x and y: thus all coefficients will
be functions of z only,

ds2 = −Dt(z) dt2 +Dx(z) dx2 +Dy(z) dy2 +Dz(z) dz2. (A.2)

The only nonvanishing Christoffel coefficients turn out to be

Γt
tz =

1
2
D′

t(z)
Dt(z)

, Γx
xz =

1
2
D′

x(z)
Dx(z)

,

Γz
xx = −1

2
D′

x(z)
Dz(z)

, Γz
zz =

1
2
D′

z(z)
Dz(z)

, Γz
tt =

1
2
D′

t(z)
Dz(z)

.

(A.3)

We require flatness by imposing that all components of the Riemann tensor
vanish. Thus we get the set of equations

D′
tD

′
x = D′

tD
′
y = D′

xD
′
y = 0; (A.4)

2D′′
i − (D′

i)
2

Di
− D′

zD
′
i

Dz
= 0 for i = x, y, t; (A.5)

which imply that two out of Dt, Dx and Dy must be constant. We now
impose the Newtonian limit. The equation of motion for test particles falling
in the gravitational field is the geodesic equation:

d2xρ

dτ2
+ Γµ

µνu
µuν = 0. (A.6)

67



68 CONSTANT HOMOGENEOUS FLAT METRIC

For motions much slower than the speed of light we may approximate the
proper time τ with t, and the four-velocity dxµ/dτ with (1, 0, 0, 0). For the
vertical component of the motion, we get

d2z

dt2
+ Γz

00 =
d2z

dt2
+

D′
t(z)

2Dz(z)
= 0. (A.7)

From this equation, we learn that Dt cannot be a constant, because oth-
erwise we would not obtain a gravitational force field in the nonrelativistic
limit. Thus Dx and Dy must be constants that we can absorb in the defini-
tion of x and y. Our new form for the metric is then

ds2 = −Dt(z) dt2 + dx2 + dy2 +Dz(z) dz2, (A.8)

where by Eq. (A.5),
2D′′

t

D′
t

− D′
t

Dt
=
D′

z

Dz
; (A.9)

hence,

Dz(z) =
(
C
d

dz

√
Dt(z)

)2

, (A.10)

where C is a constant of integration. By Eq. (A.7), for small displacements
z, we get C = 1/g, and

Dt(z) → 1 + 2gz for gz � 1, gt � 1. (A.11)

We may therefore write our line element in the final form

ds2 = −Dt(z) dt2 + dx2 + dy2 + (
√
Dt(z)

′
/g)2dz2, (A.12)

where Dt(z) is required to approximate 1 + 2gz to first order in gz. Finally
we rewrite the updated nonzero Christoffel coefficients,

Γt
tz =

√
Dt(z)

′√
Dt(z)

, Γz
zz =

√
Dt(z)

′′√
Dt(z)

′ , Γz
tt = g2

√
Dt(z)√
Dt(z)

′ . (A.13)



Appendix B

Stationary Trajectories in
Flat Spacetime (Synge’s
Helixes)

Synge (1967) solved the relativistic Frenet–Serret equations,


u̇µ = c1n
µ
1 ,

ṅµ
1 = c2n

µ
2 + c1u

µ,

ṅµ
2 = c3n

µ
3 − c2n

µ
1 ,

ṅµ
3 = −c3nµ

2

(B.1)

(where uµ is the four-velocity and nµ
i are the three normals), by setting the

curvature coefficients c1, c2, and c3 to constants. We now briefly summarize
Synge’s classification of the resulting trajectories (for pedagogical purposes,
we invert Synge’s enumeration). In Fig. B.1, we show examples of these
curves.

Inertial worldlines (type IV)

All curvatures vanish.

Hyperbolic motion (type III)

(Hyper-Stacy) c2 = c3 = 0. The only nonzero curvature is the acceleration.
Motion is restricted to a (1 + 1)-dimensional hyperplane; the trajectory
is spatially unlimited and the three-velocity approaches asymptotically the
speed of light. In a suitable Lorentz frame, we can write the worldline as


t = c−1

1 sinh c1τ,

x = c−1
1 cosh c1τ,

y = z = 0,

(Type III) (B.2)
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(a) (b)

x
x

y
y

zz

Figure B.1: Synge’s helixes. (a): Type-IIc (shown dashed), and type-IIb
helixes. (b): Type-IIa (dashed), and type-III helixes. Notice the cusp in the
xy-plane projection of the type-IIb curve; also notice that the type-III helix
coincides with projection of the type-IIa curve on the xz plane.

where τ is proper time, and c1 is the magnitude of the acceleration.

Plane helixes (type II)

Only c3 = 0: the spatial curvature c2 allows nontrivial motion in a (2 + 1)-
dimensional hyperplane. There are three subtypes.

Uniform circular motion (Roto-Stacy, type IIc)

If c22 − c21 > 0, the worldline winds up in a spatially limited domain. It is a
circular helix of radius c1/(c22 − c21) and angular velocity

√
c22 − c21.



t =
c2

c22 − c21

√
c22 − c21 τ,

x =
c1

c22 − c21
cos

√
c22 − c21 τ,

y =
c1

c22 − c21
sin

√
c22 − c21 τ,

z = 0.

(Type IIc) (B.3)
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Cusped motion (type IIb)

If c21 − c22 = 0, the result is a runaway curve (although it approaches spatial
infinity only cubically in time, rather than exponentially as type III), with
a peculiar cusp. 



t = τ +
1
6
c21τ

3,

x =
1
2
c1τ

2,

y =
1
6
c21τ

3

z = 0.

(Type IIb) (B.4)

Skewed hyperbolic motion (type IIa)

If c21 − c22 > 0, the spatial curvature c2 is not strong enough to wind up the
worldline, which becomes spatially unlimited and approaches asymptotically
the speed of light. In fact, this solution may be considered as a type-III helix
combined with a linear, uniform motion.



t =
c1

c21 − c22
sinh

√
c21 − c22 τ,

x =
c1

c21 − c22
cosh

√
c21 − c22 τ,

y =
c2

c21 − c22

√
c21 − c22 τ,

z = 0.

(Type IIa) (B.5)

General case (type I)

All curvatures have a finite value, and the trajectory is truly four-dimensional.
The resulting helix is a product (of sorts) between a type-III and a type-IIc
motion, each of which takes place in a two-dimensional hyperplane.



t = rχ−1 sinhχ τ,

x = qγ−1 sin γ τ,

y = qγ−1 cos γ τ,

z = rχ−1 coshχ τ,

(Type I) (B.6)

where 


χ2 = (c21 − c22 − c23 +R)/2,

γ2 = (−c21 + c22 + c23 +R)/2,

r2 = [(c21 + c22 + c23)/R + 1]/2,

q2 = [(c21 + c22 + c23)/R − 1]/2,

R2 = (c21 − c22 − c23)
2 + 4c21c

2
3.

(B.7)
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Appendix C

Märzke–Wheeler
Coordinates for Uniformly
Rotating Observers

Roto-Stacy’s worldline, Eq. (3.13), is given in Cartesian coordinates by



t =

√
1 +R2Ω2 τ,

x = R cos Ωτ,
y = R sin Ωτ.

(Roto-Stacy : worldline) (C.1)

We seek equations for the surface Στ̄=0, which is generated by the concentric
curves S(σ) of constant σ; each curve S(σ) is defined as the intersection of
the future lightcone of P(−σ) with the past lightcone of P(σ) (see Fig. C.1).

A point Q belongs to the future lightcone of P(−σ) if the spatial distance
between P(−σ) and Q equals the coordinate-time difference between them;
that is, if ∣∣x[Q] − x[P(−σ)]

∣∣ = t[Q] − t[P(−σ)] = ∆t(−σ); (C.2)

a similar relation is true for points on the past lightcone of P(σ):∣∣x[Q] − x[P(σ)]
∣∣ = t[P(σ)] − t[Q] = ∆t(σ). (C.3)

Summing the two equations, we get

∣∣x[Q] − x[P(−σ)]
∣∣ +

∣∣x[Q] − x[P(σ)]
∣∣ =

= t[P(σ)] − t[P(−σ)] = ∆t(σ) + ∆t(−σ) = 2
√

1 +R2Ω2σ; (C.4)

that is, the points on S(σ) describe an ellipse in the spatial plane. These
ellipses have P(−σ) and P(σ) as their foci, and their centers C(σ) are at
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x

y

(a)

P(σ)

P(−σ)

P(0)

b(σ)

a(σ)

c(σ)

Q

θ
y

t

(b)

P(σ)

P(−σ)

P(0)

Q
∆t(σ)

∆t(−σ)

Figure C.1: Geometric construction of Märzke–Wheeler constant-σ surfaces
for Roto-Stacy. Her worldline’s projection is (a) a circle in the xy plane; (b)
a sinusoidal curve in the yt plane.

(x = R cos Ωσ, y = 0). We parametrize the ellipses in the obvious way,{
x = b(σ) cos θ +R cos Ωσ,
y = a(σ) sin θ.

(ellipses S(σ)) (C.5)

The length a(σ) of the major semiaxis is given by the half-sum of the dis-
tances between any point on S(σ) and the two foci:

a(σ) =
1
2

{∣∣x[Q] − x[P(−σ)]
∣∣ +

∣∣x[Q] − x[P(σ)]
∣∣} =

√
1 +R2Ω2 σ; (C.6)

also, from Eq. (C.1) the half-distance between the foci is c(σ) = R sin Ωσ,
so we find the length of the minor semiaxis b(σ) as

b(σ) =
√
a2(σ) − c2(σ) =

√
(1 +R2Ω2)σ2 −R2 sin2 Ωσ. (C.7)

To complete our characterization of Στ̄=0, we need only the coordinate time
of the points on the curves S(σ). From Fig. C.1b we have

t[Q] = t[P(σ)] − ∆t(σ) =
1
2
{
∆t(−σ) + ∆t(σ)

} − ∆t(σ) =

=
1
2

∣∣x[Q] − x[P(−σ)]
∣∣ − 1

2

∣∣x[Q] − x[P(σ)]
∣∣; (C.8)

then by explicit calculation we find that t[Q] = c(σ) sin θ, using Eqs. (C.5)–
(C.7). Altogether we obtain the surface described by Eq. (3.16) and shown
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in Fig. 3.3. Given the symmetry of Roto-Stacy ’s motion, the effect of mov-
ing from Στ̄=0 to Στ̄=∆τ̄ will be just a translation in t by

√
1 +R2Ω2 ∆τ̄ ,

together with a rotation of x and y by an angle Ω ∆τ̄ ; the complete transfor-
mation between Märzke–Wheeler and Lorentz coordinates is therefore that
given in Eq. (3.17).
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Appendix D

Märzke–Wheeler
Coordinates for the Paradox
of the Twins: Linear Motion

For simplicity, we use Penelope’s Lorentz coordinates to parametrize Ulysses’
worldline (shown in Fig. 3.4), placing the origin (0, 0) in CU , so that the
worldline is described by x = −v|t|. Proceeding as in App. C, we see that
the Märzke–Wheeler constant-time surface that is simultaneous to P(t0) is
given by the events Q such that, for some s,

{ ∣∣x[Q] − x[P(t0 − s)]
∣∣ = t[Q] − t[P(t0 − s)],∣∣x[Q] − x[P(t0 + s)]
∣∣ = t[P(t0 + s)] − t[Q].

(D.1)

We simplify our notation by setting t = t[Q] and x = x[Q], and we insert
the explicit form of Ulysses’ worldline into Eq. (D.1):

{ ∣∣x+ v|t0 − s|∣∣ = t− (t0 − s),∣∣x+ v|t0 + s|∣∣ = (t0 + s) − t.
(D.2)

If we are concerned only with events to the left of Ulysses’ trajectory, the
outer absolute values can be exchanged for a minus. Summing and subtract-
ing the equations, we obtain the following expressions for x and t:




−x = s +
1
2
(
v|t0 − s| + v|t0 + s|),

t = t0 +
1
2
(
v|t0 + s| − v|t0 − s|). (events simultaneous to P(t0))

(D.3)
Let us take t0 > 0, and examine Eq. (D.3): if an event Q, simultaneous to
P(t0), belongs to region E of Fig. 3.4c, both P(t0 − s) and P(t0 + s) will be
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in region E. It follows that t0 − s > 0 and t0 + s > 0, and therefore{
−x = s + vt0,

t = t0 + vs.
(region E) (D.4)

In a neighborhood of Ulysses’ worldline, these equations reproduce the slices
of his constant Lorentz time. On the other hand, if Q belongs to region C,
then t0 − s < 0, t0 + s > 0, and{

−x = (1 + v)s,
t = (1 + v)t0.

(region C) (D.5)

These relations create the flat structure of Märzke–Wheeler slices shown in
Fig. 3.4c. The two coordinate patches of Eqs. (D.4), (D.5) join correctly on
x = −|t|, where s = t0.



Appendix E

Märzke–Wheeler
Coordinates for the Paradox
of the Twins: Circular
Motion

In this scenario, we make the twins start together at the event F with Lorentz
coordinates t = 0, x = R, and y = 0. While the stationary twin Pene-
lope stands fixed in space, Ulysses completes one circular orbit according
to Eqs. (3.13) and (C.1), and rejoins Penelope at the event G, defined by
t = 2πΩ−1

√
1 + Ω2R2, x = R, and y = 0. After one revolution, Ulysses’

proper-time lapse is ∆τ = 2πΩ−1; Penelope’s proper time coincides with the
Lorentz coordinate time, so that her proper-time lapse is

√
1 + Ω2R2 times

Ulysses’. It turns out that this coefficient is just γ = (1 − v2)−1/2, because
Ulysses moves with a constant velocity v = ΩR/

√
1 + Ω2R2. In the end, we

get the same differential aging of the twins as in the simpler linear geometry
of App. D, and also as predicted by a näıve application of the time dilation
rule.

To study the local distribution of this differential aging, we need to
determine the Märzke–Wheeler time (according to Ulysses) of all the events
on Penelope’s worldline. It is expedient to work in Lorentz polar coordinates
centered around Penelope’s location. Then Ulysses’ worldline is given by




t =
√

1 +R2Ω2 τ,

ρ = 2R sin
Ωτ
2
,

θ =
π

2
− Ωτ

2
.

(Roto-Ulysses: worldline) (E.1)

Let us now proceed in analogy with App. D. Eliminating the parameter τ ,
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we describe Ulysses’ worldline as

P(t) : ρ = 2R sin
(

Ωt
2
√

1 +R2Ω2

)
. (Roto-Ulysses: worldline) (E.2)

If we take only target events Q that are on Penelope’s worldline, the lightcone
conditions (D.1) can be restated simply as{

ρ[P(t0 − s)] = t[Q] − t[P(t0 − s)],
ρ[P(t0 + s)] = t[P(t0 + s)] − t[Q],

(E.3)

where t0 identifies an event along Ulysses’ worldline, and t and s identify the
simultaneous event (in the Märzke–Wheeler sense) along Penelope’s world-
line. Now, set t = t[Q] and use Eq. (E.2):




2R sin
(

Ω(t0 − s)
2
√

1 + Ω2R2

)
= t− t0 + s,

2R sin
(

Ω(t0 + s)
2
√

1 + Ω2R2

)
= t0 + s− t.

(E.4)

We sum and subtract these two equations, and rearrange their terms:

t = t0 − 2R sin

(
Ωs

2
√

1 + Ω2R2

)
cos

(
Ωt0

2
√

1 + Ω2R2

)
,

s = 2R sin
(

Ωt0
2
√

1 + Ω2R2

)
cos

(
Ωs

2
√

1 + Ω2R2

)
.

(E.5)

These new equations must be solved together for t and s as functions of t0.
The resulting distribution for differential aging is shown in Fig. E.1, and
it is a smoother version of the distribution that we obtained for the linear
geometry of App. D (see Fig. 3.5). Interestingly, if we set

{t̃, s̃, t̃0} =
Ω√

1 + Ω2R2
{t, s, t0}, (E.6)

and then multiply Eqs. (E.5) by Ω/
√

1 + Ω2R2, we find that the solutions
t̃(t̃0) and s̃(t̃0) depend on the product ΩR, but not on Ω and R separately.
This means that in these units, where the total elapsed Lorentz time is
just 2π, the shape of curve that describes the aging distribution depends
on Ulysses’ absolute velocity (ΩR = v/

√
1 − v2), but not on the radius and

angular frequency of his helix.
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v = 1/5
v = 2/3

v → 1

tU

tP

A CU BU

0 1
2

1
0

1
2
√

1−v2

1√
1−v2

CP

BP

Figure E.1: Circular version of the paradox of the twins.

The graph shows Penelope’s proper time, in units of Ulysses’ total proper-time
lapse, as determined by Ulysses with Märzke–Wheeler slicing. In these renormalized
units, the shape of the curve depends only on Ulysses’ velocity. For v → 0, the
curve tend to a straight line; for v → 1, to a limit curve.
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