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Abstract

In the next few years, the first detections of gravity-wave signals using Earth-based interferomet-

ric detectors will begin to provide precious new information about the structure, dynamics, and

evolution of compact bodies, such as neutron stars and black holes, both isolated and in binary

systems. The intrinsic weakness of gravity-wave signals requires a proactive approach to modeling

the prospective sources and anticipating the shape of the signals that we seek to detect. Full-blown

3-D numerical simulations of the sources are playing and will play an important role in planning

the gravity-wave data-analysis effort. This thesis explores the interplay between numerical source

modeling and data analysis, looking closely at three case studies.

1. I evaluate the prospects for extracting equation-of-state information from neutron-star tidal

disruption in neutron-star–black-hole binaries with LIGO-II, and I estimate that the obser-

vation of disrupting systems at distances that yield about one event per year should allow

the determination of the neutron-star radius to about 15%, which compares favorably to the

currently available electromagnetic determinations.

2. In collaboration with Lee Lindblom and Joel Tohline, I perform numerical simulations of the

nonlinear dynamics of the r-mode instability in young, rapidly spinning neutron stars, and I

find evidence that nonlinear couplings to other modes will not pose a significant limitation to

the growth of the r-mode amplitude.

3. In collaboration with Alessandra Buonanno and Yanbei Chen, I study the problem of detecting

gravity waves from solar-mass black-hole–black-hole binaries with LIGO-I, and I construct two

families of detection templates that address the inadequacy of standard post-Newtonian theory

to predict reliable waveforms for these systems.
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Chapter 1

Introduction

In the course of the next decade, the inception of gravity-wave (GW) astronomy will open an

exciting new window on the physics of compact, strongly gravitating bodies, such as neutron stars

(NSs) and black holes (BHs), both as isolated objects and in binaries; it will provide information

complementary to that available from electromagnetic and neutrino observations; and it will produce

important insights into unsolved questions such as the equation of state (EOS) of matter at nuclear

densities, the evolutionary channels that create NSs and BHs, and the mechanisms behind gamma-

ray bursts.

Meanwhile, sophisticated three-dimensional numerical simulations of GW sources are coming

of age, allowing unprecedented investigations into the effect of the internal dynamics of compact

objects on their GW emission, and slowly but surely moving toward the goals of modeling the fully

relativistic dynamics of close and merging NS and BH binaries. Learning to interface numerical

simulations with other general-relativistic approximation techniques and with the GW data-analysis

algorithms will be of paramount importance as detector data become available. At the same time,

the theory of GW detection and data analysis has become firmly established as a mature subfield

of GW science. Yet the very sources that arguably give us our best chance of detecting GWs in the

first ground-based searches (binary BHs with total mass ∼ 10–40M�) lie at the very boundary of

the current data-analysis capabilities.

The interplay between analytical and numerical source modeling and data analysis is the un-

derlying theme of this thesis. Chapter 2 and (briefly) Sec. 1.1.2 below deal with the prospects for

extracting EOS information from NS tidal-disruption waves. Chapter 3 and Sec. 1.1.3 below dis-

cuss the numerical simulations of the NS r-mode instability that I have completed in collaboration

with Lee Lindblom and Joel Tohline. Finally, Chapter 4 and Sec. 1.2.2 below report my work (in

progress, and in collaboration with Alessandra Buonanno and Yanbei Chen) on providing detection

waveforms for the detection of stellar-mass binary BHs with first-generation interferometers.
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1.1 Gravitational waves as a probe into the structure and

dynamics of neutron stars

Neutron stars are truly wondrous objects. They pack the mass of our Sun within diameters of 20–30

km; and they manage to be both a bona fide test case for the theory of general relativity, and a

laboratory for the physics of matter at extreme density and temperature. Although more than a

thousand NSs are known today from electromagnetic observations (most of them detected as radio

pulsars), the first GW detections of these objects are eagerly awaited.

1.1.1 Neutron stars as GW sources

Detailed reviews of GW sources, of the expected event rates, and of the physics that these sources

could teach us are available elsewhere [1, 2, 3]. Here I shall list briefly the most promising types of

astrophysical systems from which we could learn about NSs using ground-based GW interferometers,

such as LIGO and VIRGO.

1. NS–NS and NS–BH binaries in the last few minutes of their inspirals. For a long time, these

inspiraling systems have been the prototype for the category of short-lived chirp signals de-

tectable using ground-based interferometers. The reason, of course, is that NS–NS binaries

have actually been observed in our galaxy [4], but also that the part of the inspiral accessible

to the interferometers (with GW frequencies between 40 and 1000 Hz) sits well before the final

merger of the binary, so it is described very accurately by the well-developed post-Newtonian

equations for point masses (see Chap. 4). The successful observation of GWs from these in-

spirals will teach us about the masses, spins and locations of NSs, but not about their internal

structure.

By contrast, the detection of GWs from the endpoint of NS–BH inspirals should produce

detailed information about NS structure and EOS. For a wide range of binary parameters, the

NS will be torn apart by the tidal field of the BH well before the final plunge into the hole,

and the tidal-disruption waves will be well inside the frequency range of good interferometer

sensitivity. NS–BH binaries have also been proposed as engines for gamma-ray bursts [5] and

as suitable environments for the production of heavy nuclei in r-processes [6]. These systems

are the subject of Sec. 1.1.2 and Chap. 2. The expected measured-event rates are shown in

Table 1.2 and discussed briefly in Sec. 1.2.1.

2. Rapidly spinning, deformed NSs. This class includes the known and unknown pulsars (when

their gravitational ellipticity is high enough to provide strong GWs), and the systems known

as low-mass X-ray binaries (LMXB), where the NS is accreting matter and angular momentum

from a companion, but instead of increasing its rotation, it is locked into spin periods of about
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3 ms; it is conjectured that the angular momentum being accreted is lost to the emission of

GWs [7].

To detect rapidly spinning NSs, it will be necessary to integrate the GW signal for times up to

several months, so the Doppler frequency modulations caused by the earth’s spin and motion

(both around the Moon and the Sun) will make it much harder to detect previously unknown

sources [8]. At the same time, the shapes of these modulations will make it possible to obtain

the position of the source in the sky [9], and in some cases to match the GW source with one

of the objects known from electromagnetic observations.

If any GWs are detected from spinning NSs, their features will be very informative, in particular

when examined in correlation with electromagnetic signals from the same source. For instance,

the ratio of the GW frequency to the NS angular frequency could give information about the

nature of the inhomogeneities that give rise to the GW emission, and the evolution of the

GW amplitude and frequency could provide interesting data about NS physics such as crust

structure and dynamics, crust–core interactions, magnetic fields, viscosity, superfluidity, and

more [3].

3. Proto-neutron stars. Finally, NSs could be observed as the rapidly spinning, strongly asym-

metric remnants of stellar-core collapse, or as the proto-NSs produced by the accretion-induced

collapse of white dwarfs. Proto-NSs that spin very fast can hang up centrifugally at a stage

where their radius is still large compared to that of the final NS. Such a configuration might be

unstable to a bar mode, giving rise to an elongated object that would emit very strong GWs

[10]. The newborn NSs might also develop a GW-induced instability in their r-modes [11]. I

will discuss this possibility more extensively in Sec. 1.1.3 and Chap. 3.

For the NS in all these systems, GWs would provide information complementary to that made

available by neutrino observations, focusing on the density structure and asymmetry of the collapsed

stellar core rather than on its thermal structure.

1.1.2 Neutron-star tidal disruption as a probe into the equation of state

of dense nuclear matter

Although modern equations of state for dense nuclear matter have benefited greatly from sophis-

ticated theoretical computations and experimental measurements of nucleon–nucleon interactions

[13, 14], our knowledge of the internal structure of NSs is still plagued by a considerable uncertainty

that will be resolved only by setting stringent observational constraints.

All measurable NS parameters are relevant to this task, but it is especially promising to exploit

the correspondence between the EOS and the NS mass-radius curve. Let us see briefly how this
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is possible. The relativistic model of nonrotating NSs may be considered as a mapping from the

(barotropic) NS EOS, p(ρ), through the Oppenheimer–Volkoff (OV) equations,

dm(r)
dr

= 4πr2ρ(r),
dρ(r)
dr

= −[ρ(r) + p(r)]
m(r) + 4πr3p(r)
r(r − 2m(r))

, (1.1)

to equations that involve macroscopic NS quantities, such as a mass-radius curve M(R). [In Eq.

(1.1) ρ(r) and p(r) are the density and pressure of the spherically symmetric NS at the radius r, and

m(r) is the mass inside the radius r.] Let us work through the details of this mapping. First, we set

the central density ρc; then, we solve the OV equations and compute the NS radius R = R(ρc) and

total mass M = M(ρc); finally, we eliminate ρc from these two equations, completing our mapping

of the EOS p(ρ) into the mass–radius relation M(R).

Lindblom [15] has shown how to invert the OV mapping using even a few M(R) data points (see

also [14]). If p(ρ) is known up to a certain density ρmax from other observations and experiments,

we can start with the least dense observed NS, and integrate the OV equations backward, from the

surface of the star [where we know R and M(R)] down to the radius where ρ = ρmax. We are left

with a stellar core of known mass and radius, and we can use an analytic approximation for the

solution of the OV equations (or a numerical shooting technique) to get pc and ρc; we then add

the point pc(ρc) to the EOS, and repeat for the next NS. The result is a sequence of points along

the curve p(ρ). This analysis can be generalized to include rotationally deformed models, and to

account for the statistical uncertainty in the M(R) data1.

Unfortunately, although many parameters, including mass and radius, have been measured for

most of the ∼ 1200 known NSs [13, 14, 17], to date there are no joint determinations of M and

R, and the few values available for the radius are woefully imprecise, as we discuss in the next

subsection.

The electromagnetic determination of NS masses

The masses of more than twenty NSs in binary pulsars have been measured by studying the modu-

lations in the pulsar signal induced by the orbital dynamics [4]. The best measurements come from

the six known NS–NS binary pulsars, but less accurate determinations are still possible for binaries

where the companion is a white dwarf or a main-sequence star. This is because the measurement

of both masses from orbital effects alone (except for eclipsing binaries) requires the detection of at

least two of the post-Keplerian parameters that characterize relativistic effects such as periastron

advance, second-order Doppler effect and gravitational redshift, Shapiro time delay, and orbital de-

cay due to GW emission. Relativistic effects are easier to measure in short-period, eccentric NS–NS
1Recently, Harada [16] has shown how other macroscopic parameters of NSs (such as moments of inertia, baryonic

masses, binding energies, gravitational redshifts) can be used in this same framework to recover information about
the EOS.
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binaries, while binaries with white dwarfs or main-sequence stars tend to have larger periods and

smaller eccentricities. In this case, the NS mass can be recovered if the companion mass is deter-

mined reliably from its electromagnetic spectrum. In any case, all results are compatible with a very

narrow underlying Gaussian distribution, M = 1.36 ± 0.04M� [4].

The measurement of NS masses is also possible in X-ray pulsars and bursters. The former

are believed to be NSs accreting matter from a high-mass companion (Mc � 10M�); the pulses are

emitted from the matter accreting on the magnetic poles, modulated with the period of the accreting

star. Masses are measured from X-ray pulse delays, optical radial velocities and X-ray eclipses. X-ray

bursts, by contrast, are believed to originate from the thermonuclear explosion of matter accreted

onto the surface of an NS from a low-mass companion (M � 1.2M�). The determination of masses

is obtained from a combination of time-delay effects, optical radial-velocity curves, and constraints

on the inclination from X-ray eclipses. According to recent determinations, the X-ray pulsar Vela

X-1 has M = 1.87+0.23
−0.17M� [18], while the X-ray burster Cygnus X-2 has M = 1.8 ± 0.4M� [19].

These masses are higher than the values determined in radio pulsars, and they probably reflect the

presence of the matter accreted from the companion. Last, NS masses can be constrained from the

quasi-periodic oscillations (QPOs) of X-rays emitted from the gas accreting onto NSs from nearly

circular orbits in binaries with low-mass companions. There is evidence that the oscillations mirror

the orbital frequency of the accreting matter, which sets a tentative constraint on the NS mass [20].

The electromagnetic determination of NS radii

The determination of NS radii is much harder. The best prospects come perhaps from the direct

measurement of the so-called thermal radius for objects like Geminga (RX J1856.5-3754). This is

the nearest known NS candidate (estimated at 120 pc from parallax and circumstantial evidence),

and it is not a pulsar, which should prevent contamination of the thermal emission by magnetic

effects2. The surface temperature is � 6 · 105 K, and the application of the Stefan–Boltzmann law

yields a red-shifted radius R∞ = R/
√

1 − 2GM/R = 15 km, which implies R � 12 km [21] (but the

1σ error for R is 7 km!). Quite interestingly, a recent reinterpretation [24] of the Chandra data for

Geminga using a nonmetallic atmospheric model (as seems appropriate given that no distinct lines

were found in the spectrum) suggests that R∞ � 3.8–8.2 km, too small for most current NS models,

but not for an even denser object such as a strange star.

In June 2003, Geminga will pass within 0.3 sec of a background star of magnitude 26.5, displacing

the apparent position of this star by about δϕ = 0.6 mas. This displacement is proportional to the

NS mass; so if δϕ can be measured to a precision ∼ 0.1 mas (as might be feasible with the Hubble

Space Telescope enhanced by the Advanced Camera for Surveys), the NS mass will be determined

with an error ∼ 15% ([22]; see however [21]).

2However, the failure to observe this object as a pulsar might be simply due to an unfortunate beam alignment.
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The thermal radius can also be derived from the measured flux of X-ray bursts, if the distance

to the star is known and if the spectrum can be considered approximately thermal; however, the

bursts are likely to come from restricted hot spots on the NS surface, which will result in the

underestimation of the physical radius. Perhaps more promising is the extraction of M/R from X-

ray–burst oscillations. The burst amplitude is always strongly modulated by the rotational period

of the NS; however, even when the hot spot is on the far side of the star, the signal received on

Earth does not vanish completely, because of the strong light bending in the gravitational field on

the NS. The strength of this effect constrains the value of M/R, and therefore the value of R if M

is already known; for the binaries 4U 1636-53 and 4U 1728-34, M/R � 0.16 with a 90% confidence

[23].

Finally, it was hoped that absorption lines in the photosphere of NSs would provide M/R and

M/R2 through, respectively, gravitational redshift and pressure broadening (a simple hydrostatic

argument shows that in stellar atmospheres pressure is approximately proportional to gravity).

However, in practice it has been very hard to detect any usable absorption lines [17]. The bottom

line is that, to date, NS radii have not been determined by electromagnetic observations with errors

better than a factor of two.

The gravity-wave determination of NS masses and radii

In 1987, Thorne suggested that the GWs from the NS–BH inspirals that end in the tidal disruption

of the NS can be used to determine the NS radius [25]. NS–BH mergers are one of the standard GW

sources for second-generation interferometers (see Table 1.2). The waveforms generated by these

events will contain two kinds of information. The early part of the inspiral (during which the NS

and BH are still relatively distant, and the dynamics can be described accurately by post-Newtonian

equations of motion in the point-mass approximation) will tell us about the masses and the spins of

the NS and BH. The late part of the inspiral, depending on the binary parameters, can see the BH

tidal field become so strong that it disrupts the NS on a dynamical timescale. Physical intuition

then suggests that the details of the disruption process, as encoded in GWs, should carry useful

information about the internal structure of the NS, and in particular about its EOS. In Chap. 2

(and, briefly, in the next subsection) I present my estimation of the prospects for extracting this

information from the GWs that could be measured from a realistic event.

Saijo and Nakamura [26] have suggested that it might be possible to measure the NS radius

directly from the spectrum of the GWs emitted in NS–BH coalescences. These authors have used

BH perturbation theory to compute the spectrum of GWs emitted by a disk of dust inspiraling into

a rotating BH. When the radius Rdisk is larger than the wavelength of the quasi-normal modes of the

BH, the spectrum acquires several peaks with separation ∝ R−1
disk, irrespective of M and a. Saijo and

Nakamura conjecture that the same structure would be visible in the spectrum of GW signals from
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NS–BH binaries, providing direct information about the radius. However, two key issues are left

unaddressed. First, the particles of the disk move along geodesics, and the large relative deviation

of the geodesics in the vicinity of the BH seems to be a necessary condition for the appearance of the

spectral features; but in reality, NS matter is strongly constrained by the gravitation and pressure

of the star (except, perhaps, in the regime of severe tidal disruption). Second, for coalescence

events that happen at realistic distances the signal strength might be too low to let us resolve the

form-factor structure in the spectrum.

A simple analytical model for NS tidal disruption

In the next few paragraphs I present a short synopsis of my analysis of the prospects for the GW

measurement of NS radii, which I carry out in Chap. 2.

The simplest possible representation of an NS inspiraling into a BH is a quasi-equilibrium se-

quence of relativistic Roche-Riemann ellipsoids. These ellipsoids are equilibrium configurations of

a self-gravitating, polytropic, Newtonian fluid, moving on circular, equatorial geodesics in the Kerr

spacetime, and subject to the BH relativistic tidal field [27]. For these configurations, once the

orbital separation r and the BH mass M and spin a are set, we can still choose the NS mass m and

radius R.

As it inspirals toward the BH, an NS with parameters m and R would be represented by the

appropriate Roche-Riemann ellipsoid at each separation r, until we reach a critical rcr, beyond which

no more equilibrium configurations exist. I identify this end of the equilibrium sequence with the

onset of dynamical tidal disruption, and from rcr I obtain the GW frequency at tidal disruption,

ftd = ftd(m,R,M, a). I find that ftd depends strongly on the NS radius, and that, for the standard

NS mass 1.4M� and for a variety of likely BH masses, the disruption waveforms lie in the band of

good interferometer sensitivity for the advanced interferometers such as LIGO-II. It follows that, in

principle, we could use the waveforms from an NS tidal-disruption event to measure both the NS

mass and the NS radius.

To see how well we could measure them, I call on the theory of matched-filtering parameter

estimation ([28]; see also Chap. 4). The general idea is that GWs will be detected by correlating the

measured signal s to a bank of theoretical templates {ui}, which represent our best approximation

of the realistic GW signal as a function of the binary parameters (labeled by i). If the match 〈s, ui〉
(the correlation between ui and s) is much higher than the match 〈ui, n〉 that the template would

give, on the average, with noise alone, then we claim that we have a detection. To know how well we

can estimate R, we ask how probable it is that a particular realization of detector noise would lead

us to mistake the template uR (appropriate for the NS radius R) with the nearby template uR+∆R:

the answer is given in terms of the match 〈uR, uR+∆R〉.
In the realistic case, the templates depend on all the parameters of the binary, and there can
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be correlations in the ways that different parameters modify the templates. In my simple model,

I assume that all parameters except ftd (and consequently, R) are already known well from of

the early part of the inspiral signal, so all that is left to do is to find R. Thus, to compute the

match 〈uR, uR+∆R〉 I construct a bank of signal templates that differ only in the GW frequency at

the onset of tidal disruption. Because I am not interested in modeling accurately the relativistic

dynamics of the binary, but only the effects of tidal disruption, I choose to generate my waveform

templates from simple quadrupole-governed Newtonian inspirals [29], cutting off the signal more or

less abruptly3 when the instantaneous GW frequency reaches ftd. Computing the match between

nearby templates, I estimate the granularity to which ftd can be measured for a given signal strength

(inversely proportional to distance), and propagate this error to the NS radius. The final result of

this exercise is that, employing advanced ground-based interferometers, such as LIGO-II [3], we

should be able to measure the NS radius to 15%, for tidal-disruption events at distances that may

yield from ∼ 10−2 to 20 events per year (see Table 1.2 below). This estimated 15% error seems very

competitive with respect to the electromagnetic determinations of R surveyed above. Lattimer and

Prakash [14] argue that a single determination of an NS radius with error ∼ 10% might be enough

to constrain the NS EOS significantly.

Numerical simulations of neutron-star tidal disruption

Detailed relativistic numerical simulations are still needed to confirm these prospects, and will be

essential as a foundation to interpret any tidal-disruption waveforms that might be measured in

reality. The first Newtonian simulations [31] of NS–BH systems, carried out using both smooth

particle hydrodynamics [6, 32] and Eulerian techniques [5, 33], show that the ultimate fate of the

system depends strongly on the stiffness of the EOS, and confirm that disruption events have much

to teach us about the NS EOS.

Specifically, Lee and Kluzniak [6, 32] have performed smooth-particle–hydrodynamics (SPH)

simulations, where the NS is modeled as a self-gravitating Newtonian polytrope, and the BH is

represented by an M/r potential with an absorbing membrane at the event horizon; the NS is

subject to an effective radiation-reaction force computed from the motion of its center of mass.

These authors have considered both irrotational and tidally locked initial configurations (where,

respectively, the NS has no spin, or is rotating with the orbital angular velocity), with mass ratios

of a few.

Janka and colleagues [5, 33] have performed Eulerian simulations where the NS is modeled as

a self-gravitating Newtonian fluid with a physical equation of state, and the BH is again an M/r

potential with absorbing membrane; a radiation-reaction force is introduced in the approximation
3Bildsten and Cutler [30] estimate that complete disruption would take place in ∼ 1–3 orbital periods, while the

disrupted NS would spread into a ring in ∼ 1–2 periods, significantly reducing the GW amplitude.
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NS EOS tidal disruption accretion disk tidal tails GW after disruption

very stiff
incomplete;
light remnant
on elliptical orbit

for higher
mass ratios

never
lower-amplitude
inspiral signal
from remnant

stiff almost complete always in irrotational
binaries

sudden shutoff

soft complete always always sudden shutoff

Table 1.1: Qualitative summary of the Newtonian simulations [6, 32, 5, 33] of NS tidal disruption
in NS–BH binaries.

we just mentioned. These authors considered irrotational, tidally locked and counterrotating initial

configurations, with mass ratios of a few.

The behavior observed in these simulations is summarized in Table 1.1. Simply put, the loss

of angular momentum to GWs decreases the orbital separation until Roche overflow occurs; then

a mass-transfer stream appears and there is a rapid, violent accretion episode onto the BH. What

follows depends on the stiffness of the NS EOS:

1. For very stiff EOSs (with polytropic index n = 0.5), the NS is not completely accreted and

survives as a remnant (probably unstable) in an eccentric orbit; secondary accretion episodes

are possible; and an accretion disk is formed, but only if MNS/MBH > 0.5.

2. For stiff EOSs (n = 0.66), the NS is almost completely disrupted, and there is always a thick

accretion disk of 0.2–0.3M�; irrotational initial configurations lead to more violent encounters

where larger tidal bulges deform the NS, and eventually long tidal tails are formed with enough

energy to escape the binary.

3. For soft EOSs (n > 0.66), tidal disruption is always complete regardless of the initial mass

ratio; both a massive accretion disk and a large one-armed spiral are formed.

Altogether, these simulations show that hydrodynamical effects play an important role in the global

behavior of the system at small separations; the mass-transfer process is always unstable, and it can

by itself destabilize the orbit. The outcome of the coalescence process is very sensitive to the assumed

stiffness of the EOS, which bodes well for the extraction of EOS parameters from tidal-disruption

waveforms; and except for the stiffest EOS, the gravity-wave shutoff at tidal disruption is sudden

and complete, which shows that the sudden-shutoff approximation, used in my simple models (see

Sec. 2 above and Chap. 2), might not be too far off the truth.

It is possible to improve on these simulations; indeed, in collaboration with Lee Lindblom and

Joel Tohline, I have begun to work toward this goal. We are setting up a framework for Eulerian

numerical simulations that will follow the evolution of the NS in its freely falling reference frame,

as it inspirals toward the BH. The advantage of this approach is that it enables us to devote all
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of our computational power (and memory) to modeling the hydrodynamics of the NS, which is the

most important and interesting aspect of the tidal-disruption process. We plan to obtain the orbital

evolution of the binary by solving post-Newtonian expanded equations for the general-relativistic

two-body problem; and we plan to model the star as a Newtonian, polytropic fluid that is evolving in

the inertial reference frame centered on the NS center of mass, and that is subject to the relativistic

tidal field of the BH. We should improve on the Lee et al. [6, 32] simulations because Eulerian

hydrodynamics is inherently more accurate than SPH in modeling violent processes involving fluid

interfaces, such as the surface of the NS; and we should improve on the Janka et al. [5, 33] simulations

because we will be able to resolve the NS more finely; finally, we should improve on both sets of

simulations by including relativistic corrections to the orbital evolution and to the BH potential that

acts on the NS.

1.1.3 Gravity waves from the r-mode instability of nascent neutron stars

All rotating stars possess a class of circulation modes (r-modes) that are driven toward instability by

gravitational radiation reaction; in hot, rapidly rotating young NSs, this destabilizing effect might

be so strong that it dominates viscous dissipation. Once an r-mode achieves sufficient amplitude,

the star is quickly spun down as angular momentum is lost to gravitational radiation [11, 12]. For

stars with initial angular velocity Ω ∼ 1000 Hz, the timescale for the growth of the most unstable

r-mode is ∼ 40 s. In recent years, r-modes have attracted considerable interest as a promising

GW source for ground-based detectors, and as a possible explanation for the failure to observe any

young pulsars that are rotating at angular velocities close to their theoretical spin limit (such rapidly

rotating NSs were expected, but not by everybody, in supernova remnants).

However, the astrophysical relevance of r-modes is still in doubt, pending judgment on two

separate issues. First, this instability (discovered by analyzing the linearized Euler equations for

perfect fluids) might not be confirmed after all the complicated physics that occurs in NSs is taken

into account, including relativistic effects, physical-EOS effects, solid crust effects, magnetic fields,

rotation laws, exotic sources of viscosity, and so on [11, 12]. Second, the amount of angular momen-

tum removed from the star and the strength of the GW radiation emitted depend critically on the

maximum mode amplitude that can be reached; but the growth of the mode might be limited to a

very small saturation amplitude by magnetic-field effects [34], by turbulent boundary-layer effects

at the crust-core interface [35], or by leakage of energy to other (damped) modes through nonlinear

hydrodynamical couplings.

There have been several attempts to investigate the nonlinear dynamics of the r-modes, including

leakage of energy to other modes, by means of second-order Lagrangian perturbation theory ([36],

see also Sec. 4 below), and of relativistic numerical simulations in the Cowling approximation [37].
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In addition, in collaboration4 with Lee Lindblom and Joel Tohline, I have carried out Newtonian

numerical simulations that include radiation reaction as an effective force. Much in the spirit of this

thesis, this work is a good illustration of how numerical techniques can be employed to supplement

analytical work in the modeling of GW sources, and to guide data-analysis strategies. It is the

subject of the next section and, more in detail, of Chap. 3.

Numerical evolutions of nonlinear r-modes in neutron stars

The simulation of NS instabilities is a difficult task. First, the hydrodynamical timescale (which,

through the Courant condition, determines the lengths of time that can be explored within a given

allotment of CPU time) is much shorter than the timescales for the growth of instabilities (in

the case of r-modes, this is the GW radiation-reaction timescale). Second, the microscopic and

macroscopic physics of NSs can be very complex, with important effects arising from such different

physical ingredients as the proton/neutron fractional composition of the nucleon gas, the possibility

of superfluid phases, the presence of strong magnetic fields, and so on. Third, relativistic corrections

can be important, but fully relativistic hydrodynamics (with the Einstein metric being evolved on a

par with the fluid variables) is still somewhat beyond the capabilities of current codes and machines

[43]. Even the less ambitious codes that implement the Cowling approximation [43] (where the

dynamics of the fluid are played out in a fixed background metric) are still rather unwieldy, and

saddled by very large numerical viscosities with respect to their Newtonian counterparts.

Lindblom, Tohline, and I address the second and third concerns by choosing to work with a simple

Newtonian polytropic fluid. Our rationale is that the structure of r-modes is not very sensitive to

the underlying EOS, and we expect that the qualitative features of the nonlinear hydrodynamics

should also be essentially correct in our simplified model. Other physical processes (magnetic fields,

superfluidity) can be very important for the overall picture of the instability, but they probably have

little bearing on the issue of nonlinear couplings. We do need to include at least one relativistic effect:

radiation reaction, which drives the mode unstable, is added as an effective force [44] proportional

to the derivatives of the current multipole moments.

We address the first concern (the long instability timescale) by increasing the strength of the ef-

fective radiation-reaction force by a factor of about 4500, to bring down the r-mode growth timescale

to values comparable to the rotation period. Even with this kludge, the physical behavior that we ob-

serve should still be realistic, if the nonlinear dynamics of the mode (including its couplings to other

modes) happens at the hydrodynamical timescale, which is modeled correctly in our simulations.

(However, see Sec. 4 below.)

4The respective contributions to this project can be characterized as follows. Joel Tohline provided his proven
numerical code, which I ported to the CACR HP supercomputers; he also contributed his considerable expertise on
numerical hydrodynamics. Lee Lindblom set up the basic framework for the simulations and completed the initial
analytical work. Under his supervision, I ran the code on a daily basis, designed and performed several runs, tests,
and analyses, and wrote most of the paper that appears in this thesis as Chap. 3.
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Our simulations were based on a second-order–accurate finite-difference code developed at LSU

by Tohline and his students [38] to tackle a variety of astrophysical problems. The LSU code was

parallelized [39] in the domain-decomposition paradigm using the well-known MPI [40] library. We

ran it for a 128×64×128 cylindrical grid on 16 nodes of the HP V-2500 supercomputers at Caltech’s

Center for Advanced Computing Research [41].

We solved the Newtonian Euler and Poisson equations, after setting up the initial equilibrium

configuration as a simple, rigidly rotating polytrope (with n = 1, M = 1.4M�, R = 12.5 km,

and rotation period P0 = 1.21 ms), obtained by solving self-consistently the Bernoulli and Poisson

equations [42]. We then added a seed mode (a small-amplitude, slow-rotation approximation to the

most unstable r-mode, the one with l = m = 2) to the initial velocity distribution of the NS. The

seed mode was set to the dimensionless amplitude α = 0.1 (equivalent to mode velocities ∼ 10% of

the rigid-rotation velocity).

We then let the star evolve, and we monitored the r-mode amplitude by extracting the (l =

2,m = 2) current multipole from the NS velocity field. The r-mode frequency was determined from

the quasi-periodic oscillations of this multipole. The behavior that we observed was very surprising.

The mode grew exponentially (in good accord with theory) until α ∼ 2; then the growth began to

be limited by some unidentified nonlinear process; eventually, the amplitude peaked at α = 3.35,

and then fell down to very low values within few rotation periods. Our movie of the growing, then

crashing r-mode can be found on the Web [46].

What nonlinear process was responsible for limiting the growth of the r-mode, and for causing

its rapid demise? We discovered a clue when we examined the evolution of the energy and angular

momentum in the course of the simulation. Even after the emission of angular momentum into GWs

fell to zero, the star continued to lose energy; surely, something other than GWs must be responsible

for this loss. Our explanation was the following. To first order in its characteristic amplitude, the

r-mode is only a velocity mode; to second order, however, there is an associated density perturbation

that appears as a traveling wave with four crests (two in each hemisphere) on the surface of the

star; see our movie [46]. As the amplitude reached its maximum, these propagating crests turned

into large, breaking waves, and the edges of the waves developed strong shocks that began to dump

kinetic energy into thermal energy, eventually killing the r-mode.

In the traditional scenario for GW emission from r-modes [47], the unstable r-mode would grow

until it reached a dimensionless amplitude of about one, and then it would saturate and persist

at that amplitude (for several months) until it would have lost most of its angular momentum;

during that time, the frequency of the r-mode would decrease in proportion to the NS spin. The

prospective picture of r-mode GW signals that emerges from our evolutions is quite different. Most

interestingly, the r-mode spindown episodes are faster (only a few minutes), and the GW frequency

remains remarkably constant as the angular velocity of the star decreases. As a result, the search for
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r-mode signals changes from a month-long, pulsar-like search (which must account for the Doppler

shifts generated by Earth’s movement in the solar system) to an easier, shorter chirp-like search,

with encouraging prospects for detection [48].

Our code provided a nice laboratory to perform several more evolutions and tests.

1. We performed basic tests of the robustness of the code and of our diagnostics, evolving stars

with different angular velocities, with or without r-mode perturbations, and at different grid

resolutions.

2. We investigated the dependence of the saturation amplitude on the artificial amplification

of radiation reaction. Our computing budget made it impossible to increase the radiation-

reaction timescale; instead, we reduced it even more, finding that the r-mode saturated faster,

but at essentially the same amplitude.

3. We studied the unforced evolutions of unit-amplitude r-modes, finding that they were es-

sentially stable for as long as we could evolve them. These results are compatible with the

relativistic evolutions (also unforced) performed by Stergioulas and Font [37].

Recent developments

In two recent papers, Arras and colleagues [36] study the saturation of r-modes by three-mode

nonlinear coupling to other inertial (Coriolis-restored) modes in neutron stars. They identify two

relevant saturation mechanisms: in the weak driving limit, the unstable parent r-mode transfers

energy by way of parametric resonance [49] to a pair of quasi-resonant, overdamped daughter modes.

When the parent mode becomes large enough, it starts to excite these daughter modes. Eventually,

they get to amplitudes such that essentially all the energy that the radiation reaction imparts to

the parent mode is immediately transferred to them and dissipated. The saturation amplitude of

the parent mode depends on the strength of the parent-mode driving, and on the daughter-mode

damping coefficients and quality factors.

In the strong driving limit, the nonlinear energy transfer is faster than the damping of the

daughter modes; eventually a large family of daughter modes (spread over an inertial range) be-

comes excited, and the parent mode is saturated by leakage of energy out of the inertial5 range to

other damped modes; in this case, the saturation amplitude of the parent mode depends only on

the efficiency of nonlinear energy transfer to the daughter modes. After evaluating the nonlinear

coupling coefficients and the damping rates for inertial modes, Arras and colleagues conclude that

this strong driving scenario is relevant to the case of r-modes, both for rapidly spinning nascent

stars and for recycled stars in low mass X-ray binaries; they obtain a saturation amplitude of
5The noun inertial has quite different meanings when it is used in the phrases inertial range and inertial mode.
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∼ 0.7 · 10−2(νstar/1kHz)5/2, or ∼ 0.4 · 10−2 for the star in our simulation [64]. They also argue that

the results discussed in the previous section are artifacts of our unphysically large driving force.

Also recently, Jones suggested [51] and Owen and Lindblom verified [50] that, if the NS core

contains hyperons in addition to neutrons and protons, then bulk viscosity due to the nonleptonic

weak interactions

n+ n⇔ p+ Σ−, n+ p⇔ p+ Λ (1.2)

will suppress the r-mode instability after the core temperature drops below 3 · 109 K. Now, the

standard modified URCA process6 will cool the NS to 3 · 109 K in one day; however, for modern,

proton-rich EOSs, direct URCA will cool the NS to 3 · 109 K within a few s. It seems that the

window of opportunity for the r-mode instability is shrinking more and more.

Still, in the end, I believe it is fair to argue that there is such uncertainty about the structure and

dynamics of NSs that the final verdict on the r-mode instability will come only from their detection

with GW interferometers, or from the failure to detect them; so it is reasonable to devote some

resources to GW searches for r-mode signals (perhaps with shapes similar to those predicted by our

simulations).

1.2 Gravitational waves from coalescing binaries of compact

stellar objects

Binaries of compact stellar object are the standard source for the class of chirp signals that will be

sought by ground-based GW interferometers. There are many reasons for this, not least the fact

that the effects of GWs have been first observed (albeit indirectly) in such a binary, the Hulse–

Taylor pulsar. But there is more to it: because they are the incarnation of the (unsolved) general-

relativistic two-body problem, binaries have come to represent the very essence of Einstein’s theory

of gravitation. This is especially true for binaries consisting of two BHs, objects made of pure

spacetime curvature.
6Direct URCA processes are simply β-decay and its inverse,

n ⇔ p + e− + ν̄e, p ⇔ p + e+ + νe, (1.3)

or the similar processes involving a hyperon. On the other hand, modified URCA sees the participation of a spectator
nucleon,

n + (n, p) ⇔ p + (n, p) + e− + ν̄e, p + (n, p) ⇔ n + (n, p) + e+ + νe, (1.4)

so it is suppressed with respect to direct URCA; however, it might be the only available cooling mechanism if the
conservation of momentum in Eq. (1.3) cannot be satisfied because the accessible phase-space is saturated with
fermions.
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LIGO-I LIGO-II
system event rate visible to det./yr visible to det./yr
NS–NS 1 to 500 GEM 20 Mpc 3 × 10−4 to 0.3 300 Mpc 1–800
NS–BH 0.1 to 100 GEM 43 Mpc 4 × 10−4 to 0.6 650 Mpc 1–1500
BH–BH (field) 0.1 to 10 GEM 100 Mpc 4 × 10−3 to 0.6 z = 0.4 30–4000
BH–BH (clusters) 1 to 10 GEM 100 Mpc 0.04–0.6 z = 0.4 300–4000

Table 1.2: Estimated coalescence and detection rates for compact binaries [GEM ≡ (events in our
galaxy)/Myr]. From [52, 3]. LIGO-II numbers are for a wideband optical configuration and sapphire
test masses. The rates for BH–BH binaries distinguish between sources in standard galaxies and in
globular and other star clusters, which can act as incubators for binaries (single BHs, heavier than
most stars in the cluster, sink to the center via tidal friction, where they find and capture other BHs;
three-body interactions then harden the resulting binaries, and often eject them from the cluster
[53]; recent investigations [54] suggest that four-body interactions might actually cause the binaries
to coalesce within the clusters, creating a hierarchy of BHs with masses ∼ 100–1000M�).

1.2.1 The statistics of coalescing binaries

The estimated galactic coalescence rates for binaries of compact objects are shown in Table 1.2,

together with their expected detection rates, computed for first- and second-generation LIGO inter-

ferometers by extrapolating out through the universe [52, 3]. The rates for NS–NS binaries, which

have actually been observed as radio pulsars in our galaxy [4], are best estimated by modeling the

selection effects intrinsic to pulsar surveys. For each observed binary i, Phinney ([55]; see also

Kalogera et al. [52]) computes the scale factor

Si =
Volume(galaxy)

Volume(searched)
, (1.5)

which gives (roughly) the number of systems similar to i that are present in the galaxy. The galactic

coalescence rate is then approximated as
∑

i Si/τi, where τi is the lifetime of the binary i. The

determination of the Si is very delicate, because it must account for all the selection effects that

limit the observability of pulsars from Earth surveys (such as beaming, faintness, spatial distribution,

and so on). This procedure is fragile also because of the very limited sample of observed objects. It

gives the galactic event rate, 1 to 500 GEM, shown in Table 1.2.

Because no BH–NS or BH–BH binaries have yet been identified reliably, predictions on their

coalescence rates can be obtained only from theoretical population-synthesis models [52]. These

involve complex Monte Carlo computations that must include reasonable representations of poorly

understood processes, such as the formation of stars and binaries, and their evolution (including

single-star evolution, orbital evolution and decay, mass transfer episodes, core collapse and supernova

explosions, and so on). As a consequence, the resulting event rates are very uncertain. For NS–

NS binaries the theoretical predictions are in good agreement with the extrapolations from pulsar

surveys [52], but this could be just a coincidence.
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To extrapolate the galactic event rate to the volume of universe accessible to GW interferometers,

we assume that the coalescence rate is proportional to the rate of formation of stellar progenitors,

and that the properties of primordial binaries in other galaxies are similar to those in ours. Then

we can use scaling arguments based on B-band luminosity density, galaxy number density, or cluster

number density. Kalogera and colleagues [52] obtain a scaling factor ∼ 10−2 Mpc for h = 0.65.

The last step toward detection rates is the determination of the volume of universe where GW

detectors can actually observe a given source. The distance from Earth that can be probed by a

given detector is inversely proportional to the strength of the signal, which scales as M5/6 [for a

binary with masses m1 and m2, the chirp mass M is given by M = (m1m2)3/5/(m1 + m2)1/5].

This scaling gives an intrinsic advantage, detection-wise, to the heavier NS–BH and especially BH–

BH binaries over NS–NS binaries. Barring surprises, if LIGO-I detects a coalescing binary, it will

probably be made of two BHs.

1.2.2 Detecting BH–BH binaries with LIGO-I

The final chapter of this thesis reports my work (in collaboration7 with Alessandra Buonanno and

Yanbei Chen) on templates for the detection of GW signals from the coalescence of nonspinning

BH–BH binaries with total masses between 10 and 40M�. These are among the most promising

sources for first-generation ground-based interferometers, but the possibility of detecting them with

standard matched-filtering techniques is seriously imperiled by our ignorance about the gravitational

waveforms that they generate. The spins of the two BHs are expected to play a very significant role

in the late stages of the inspiral [57], so the analysis of nonspinning binaries reported in Chap. 4 is

preliminary to considering the effects of spin, which is currently work in progress.

Most GW signals sought by ground-based GW interferometers are so weak that they can be

detected only8 if we have a previous knowledge of their shape, by correlating the interferometer

output with a theoretically determined signal template ([28]; see also Sec. 4.2). The higher the

correlation, the more confidence we have that a signal closely resembling the template is actually

present in the experimental data. This detection scheme (and the estimation of upper limits if no

detection is made) depends on the assumption that the equations used to compute the theoretical

templates represent faithfully the evolution of the actual physical system.

The present knowledge of the weak-gravity regime of GR justifies the assumption that the post-

Newtonian (PN) approximation [59] can model accurately the inspiral stage of NS–NS coalescences,

at least for GW frequencies within the range of good interferometer sensitivity. [The PN approxima-

7All three authors have contributed to all the different analytical and numerical tasks inherent in this project,
but I have been responsible most especially for assembling a Mathematica package capable of synthesizing waveform
templates from several phasing and orbital equations and of evaluating the overlaps between template families, while
Alessandra Buonanno has paid attention especially to the analytical framework.

8The principal exception is merger waves for BH–BH binaries, if they last for very few cycles. In this case, filtering
the signal with templates is not much more efficient than looking for excess power in the detector output [56].
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tion is essentially a perturbative expansion of the Einstein equations in the characteristic Keplerian

velocity v = (πMfGW)1/3, where M is the total mass of the binary, and fGW is the instantaneous

GW frequency.] Since NS–NS binaries have been for a long time the standard chirp source, this

assumption has in fact guided the development of the theory of GW data analysis.

Unfortunately, the same does not hold true for BH–BH binaries with total masses between 10

and 40M�. These enter the LIGO frequency range at a very late stage in their inspiral, when only

50–800 orbits are left before the merger, and when the post-Newtonian expansions used to compute

waveform templates fail to converge properly. Several techniques have been suggested to accelerate

the convergence of the PN series, but they have been shown to lead to very different waveforms, so

no particular template family based on any such technique can be trusted to represent adequately

the physical signals.

To address this concern, we considered all the PN approximation schemes (for nonspinning BHs)

that have appeared in the literature, including:

1. Adiabatic models, where we apply the energy balance equation d(PN energy)/dt = −(GW flux)

to evolve the binary through a sequence of quasi-stationary circular orbits; different ways to

resum the PN energy and flux functions generate distinct models [60].

2. Hamiltonian schemes, where we solve the Hamilton equations obtained from the PN Hamilto-

nian (possibly resummed) [60].

3. Direct schemes, where we use the PN analog of the Newtonian equations of motion, including

radiation-reaction terms [61].

Under the hypothesis (admittedly, a strong one) that the variety of signals thus obtained spans

enough volume in signal space to encompass the actual physical signals, we then looked for an

effective family of templates that can approximate all of these target models equally well, and

interpolate between them. With luck (if, as it were, the various PN models are not all wrong in

the same direction) the effective family will also be a reasonable approximation to the true physical

signals.

The effective family need not be one of the PN models, and in general it will not be indexed by

the same physical parameters [such as total mass M and mass ratio ν = m1m2/(m1 +m2)2] as the

PN models are. Instead, we should see the effective family as a collection of signal shapes selected

phenomenologically to approximate the physical waveforms (at least in our wishful thinking). Such a

family will be useful mainly for the purpose of signal detection, rather than for parameter estimation.

Under the same hypothesis, we can use the distance (in signal space) that separates the effective

template family from the target models to estimate the distance between the effective family and

the real physical signals. As we shall see in Chap. 4, in the theory of matched-filtering detection

we can give a quantitative formulation to the notion of distance between and within signal families.
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The distance between the effective family and the real signals (or equivalently a quantity called the

fitting factor [62]) sets an upper limit on the efficiency of the former to detect the latter (given as

probabilities for false alarms and false dismissals). The distance between templates within the effec-

tive family can be used to determine how widely spaced9 the templates can be placed (and therefore

how many we need) to achieve a certain detection efficiency (the required spacing is equivalent to a

quantity called the minimum match [63]).

1.2.3 Detection templates for BH–BH binaries

We have identified two effective template families that can match all the credible target models

with fitting factors of 0.95 or better (corresponding to a loss in event rate � 15%, for most physical

parameters). These are:

1. Adiabatic or Hamiltonian models with resummed PN energy/Hamiltonian and flux, with mass

ratio parameter ν pushed to nonphysical values. It seems that the mere formal extension of the

models along the ν axis is able to recapture much of the effect of solving different equations

with differently resummed PN functions.

2. Frequency-domain models that represent the amplitude and phasing of the waveform’s Fourier

transform as polynomials in the frequency fGW. We select the specific powers that appear in

these polynomials by inspecting the power-series expansion (in fGW) found for the amplitude

and phasing of PN adiabatic models under the stationary-phase approximation. However, we

do not constrain the coefficients to their PN functional dependence on the physical binary

parameters. This is somewhat in the spirit of the Fast Chirp Transform techniques introduced

by Prince and colleagues [58].

The expected performance of both families improves if we employ several copies of the same template,

cut off at different final frequencies. The manner in which the true waveform behaves at the end is

very uncertain, and the cut incorporates this uncertainty.

For both classes of effective template families, we estimate that the number of templates required

to achieve a total match � 0.92 (including the effects of both fitting factor and minimum match,

and corresponding to a loss in event rate � 20%) is manageable (∼ 104). This number includes the

replication of templates with different frequency cuts, and the extension of the effective template

bank between and beyond the parameter ranges that are needed to approximate the target models

well. Such an extension is desirable because we take the target models as a loose guide, but not a

strict prescription, of how the true signal might look like.

Summarizing, we claim that first-generation ground-based interferometers have a fighting chance

to detect GW signals from BH–BH binaries with more than 80% of the detection rate that would
9Any detection algorithm used in practice can make use only of discrete families of templates!
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result from using the unknown true signals as templates. This goal can be achieved by adopting

an approach that emphasizes detection over parameter estimation, and that makes use of effective

template banks that extend beyond the range of parameters that would normally correspond to

physical values.
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Chapter 2

Prospects for gravitational-wave
observations of neutron-star tidal
disruption in neutron-star–black-hole
binaries

For an inspiraling neutron-star–black-hole binary (NS–BH), we estimate the

gravity-wave frequency ftd at the onset of NS tidal disruption. We model the

NS as a tidally distorted, homogeneous, Newtonian ellipsoid on a circular, equa-

torial geodesic around a Kerr BH. We find that ftd depends strongly on the NS

radius R, and estimate that LIGO-II (ca. 2006–2008) might measure R to 15%

precision at 140 Mpc (this distance yields about one event per year under current

estimates). This suggests that LIGO-II might extract valuable information about

the NS equation of state from tidal-disruption waves.

Originally published as M. Vallisneri, Phys. Rev. Lett. 84, 3519–3522 (2000).

2.1 Introduction

The equation of state of the bulk nuclear matter inside a neutron star (NS) is poorly understood

[1]. For example, candidate equations of state that are compatible with nuclear physics experiments

and theory predict, for a 1.4M� NS, a radius anywhere from about 8 km to 16 km [2]. Thorne

has conjectured that insights into the equation of state might come from measurements of the

gravitational waveforms emitted by merging NS–NS binaries or tidally disrupting NS’s in neutron-

star–black-hole (NS–BH) binaries [3, 4]. More recently, Newtonian models of NS–NS mergers have

given strong evidence that the merger waves do carry equation-of-state information, but for NS–NS

are emitted at frequencies (∼ 1400–2800 Hz) too high for measurement by LIGO-type gravity-wave

interferometers [5, 6]. In this chapter, we show that the prospects for NS–BH measurements are

much brighter.
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Figure 2.1: Plot of (square root of) noise spectral density for different LIGO configurations: (1)
LIGO-I; (2) LIGO-II wideband; (3), (4) LIGO-II narrowband centered on 500 and 850 Hz. Curves
(1)-(3) are from [7]; curve (4) was produced by K. A. Strain using the same detector specifications
as in [7].

Central to these prospects is the question of whether NS tidal-disruption waves lie in the band of

good interferometer sensitivity (for LIGO-II, ∼ 30–1000 Hz [7]; see Fig. 2.1). Numerical modeling

of NS tidal disruption in NS–BH binaries is only now getting underway [8] and has not yet included

computations of the emitted gravity waves or even their frequency bands. As a result, the best

frameworks now available for estimating the tidal-disruption gravity-wave band are highly simplified,

quasi-analytic models by Shibata [9] and by Wiggins and Lai [10], which represent the inspiraling

NS as an irrotational [11], incompressible or polytropic Newtonian ellipsoid, moving on a circular,

equatorial geodesic orbit around a Kerr BH, and being tidally distorted by the Kerr Riemann tensor.

For simplicity we focus on Shibata’s homogeneous models, and then appeal to the polytropic models

for evidence that compressibility has only small effects.

2.2 Neutron-star model

In Shibata’s analysis, the NS gravitational field, its centrifugal potential, and the Newtonian tidal

potential constructed from the Kerr Riemann tensor are all quadratic functions of position. As

a result, a class of equilibrium solutions are the classic irrotational, homogeneous Roche-Riemann

ellipsoids [12]. Given a choice of the binary parameters M , a and r (the BH mass and angular mo-

mentum per unit mass, and the orbital separation, i. e., the Boyer-Lindquist radius of the geodesic),

there is a one-parameter family of such NS models with density ρ ranging downward through the

family to a minimum ρcr(M,a, r).

We model the inspiraling NS as one of Shibata’s irrotational ellipsoids, identified by its mass
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m, and its density ρ or mean radius R = (3m/4πρ)1/3. In our simple framework, the uncertainty

in m(R) embodies the uncertainty about the NS equation of state. We describe the inspiral as a

sequence of circular, equatorial Kerr geodesics that shrink inward until the NS reaches the innermost

stable circular orbit, r = risco, or begins to tidally disrupt [which happens at the radius rtd where

the star’s density ρ matches the critical density ρcr(M,a, rtd)].

The Kerr geometry provides a one-to-one correspondence between the orbital radius rtd and the

gravity-wave frequency ftd at which tidal disruption begins:

ftd(M,a, rtd) =
1

π(a+
√
r3td/M)

(2.1)

(here and below we set G = c = 1). It is this ftd that LIGO-II can measure. Having measured ftd

and determined the masses M and m from the observed inspiral waveforms [13], one can compute

rtd and then the NS density ρ = ρcr(M,a, rtd) and the mean NS radius R. Thereby, the LIGO-II

observations can determine a point on the NS mass-radius curve m(R), which represents the NS

equation of state in our simplified analysis. Even one such point could give valuable information

about the real NS equation of state, and several such points could determine it remarkably well [14].

To estimate the accuracy with which LIGO-II might determine the NS radius R, we need the

explicit relationship between R and the disruption-onset frequency ftd. More precisely, we need

R(m,M, a, ftd), which can be derived as follows: (i) rtd(M,a, ftd) is obtained by inverting Eq. (2.1);

(ii) ρcr(M,a, rtd) is obtained by solving Eq. (3.9) of [9] for the ratios of semiaxes of the equilibrium

configurations, and then extremizing Eq. (3.10) of [9], in which Ω̃2 = M/(πρr3); (iii) then R is

obtained as R = [3m/4πρcr(M,a, rtd)]1/3. The result has the form

R(m,M, a, ftd) = m1/3M2/3 D̂
[ a
M
, ftdM
]
, (2.2)

where D̂ is a dimensionless function with remarkably weak1 dependence on a/M . This R(ftd) is

shown in Fig. 2.2 for various M , for a/M = 0.998 (the curves for other a/M are almost identical

to these), and for m = 1.4M� [15]. The radii shown, R = 8–16 km for m = 1.4M�, correspond

to the range of predictions by plausible NS equations of state [2]. The curves in Fig. 2.2 are well

approximated by the formula (with G = c = 1)

R

m1/3M2/3
≈
{

0.145 (ftdM)−0.71 for ftdM � 0.045,

0.069 (ftdM)−0.95 for ftdM � 0.045.
(2.3)

Although the BH spin parameter a has negligible influence on the function R(ftd), it strongly

1This is because apart from a weak dependence on a/M , the orbital frequency of Kerr geodesics scales with orbital
separation in the same way as the tidal strength, ∼ M/r3.
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Figure 2.2: NS radius R vs. disruption-onset frequency ftd, for m = 1.4M� and M = 2.5–80M�.
The black dots, parametrized by a/M , specify the onset of plunge into the BH; tidal disruption
is measurable only for ftd left of the plunge point, i. e., for R above it. Negative a/M indicates
retrograde NS orbits.

influences the radius risco of the innermost stable circular orbit [16]. If the NS is still intact when

it reaches risco, it then will plunge rapidly into the BH and the tidal-disruption waves, if any, are

likely to be so weak and short-lived as to be useless for measuring NS properties. Thus, there is

not much hope of measuring tidal disruption unless ftd < fplunge = [Eq. (2.1) with rtd replaced by

risco(M,a)]; i. e., unless ftd is left of the relevant big dot in Fig. 2.2.

Figure 2.2 and the above discussion show that (i) for a wide range of realistic parameters,

tidal disruption occurs before the plunge begins, and (ii) for all realistic parameters except a very

narrow range (M � 10M� and R � 10 km), the tidal-disruption waves fall in the range of good

LIGO sensitivity, f � 1000 Hz. The Lai-Wiggins polytropic NS models [10] give similar curves and

conclusions: for polytropic indices n = 0.5 and 1.0, which approximate NS equations of state, the

R(ftd) curves are displaced upward in frequency from those of Fig. 2.2 by a mere ∼ 50 and ∼ 100 Hz.

2.3 Parameter estimation

Turn now to an estimate of the accuracy to which LIGO-II could measure ftd (and then R) using

Wiener optimal filtering [17, 18]. The measured gravity-wave data stream g(t) is compared to a set

of theoretical inspiral templates h(θi; t), indexed by the parameters θi of the binary; a “best fit” θ̂i

is found which maximizes the likelihood of observing g(t) given a “true” signal h(θ̂i; t), and given

a statistical model of the detector noise [a Gaussian2 random process with zero mean and spectral

2It is expected that non-Gaussian noise will be removed by coincidence between several detectors.
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density Sn(f)]. For strong enough signals, θ̂i will have a gaussian distribution centered around its

“true value” θ̃i, with covariance matrix [18]

Cij = (Γ−1)ij , Γij ≈ 2
〈
∂h

∂θi
(θ̂k)
∣∣∣∣ ∂h∂θj (θ̂k)

〉
, (2.4)

where the “inner product” 〈. . .〉 is defined for any two real data streams g(t), h(t) in terms of their

Fourier transforms g̃(f), h̃(f) by

〈g, h〉 =
∫ ∞

−∞
df
g̃(f)h̃∗(f)
Sn(|f |) . (2.5)

Because so little is known about the tidal disruption and our NS models are so crude, we use

the simplest of templates in our analysis: slow-motion, quadrupolar waveforms for point particles

in circular, Keplerian orbits with quadrupole-governed inspiral. The Fourier-transformed waveform,

squared and averaged over binary directions and orientations, is given by3

〈|h̃b|2〉 =
π

30
µM3

T

d2

1
(πMT f)7/3

θ(fplunge − f), (2.6)

where µ and MT are the reduced and total masses, d is the distance to the binary, and the step

function shuts off the signal at the onset of plunge.

For typical observations, optimal filtering of the inspiral signal should give good estimates of

M and m [13]. We therefore assume that the accuracy in measuring R is limited only by the

uncertainty4 of ftd. The estimation of ftd depends heavily on the details of the tidal-disruption

waveforms, which are largely unknown. However, it is reasonable to expect tidal disruption to be

a sudden event that significantly weakens gravity-wave emission within a few dynamical time-scales

after ftd has been reached5. Correspondingly, we employ a toy model where the inspiral waveform

of Eq. (2.6) dies out over a frequency band (ftd, ftd + δf):

h̃td(f) =


h̃b(f) if f < ftd,

h̃b(f)Θ(f−ftdδf ) if ftd < f < ftd + δf ,

0 if f > ftd + δf ,

(2.7)

where Θ(x) = 1 − x (linear decay), or Θ(x) = 10−x (exponential decay). The standard deviation of

the “best fit” f̂td is given by Eq. (2.4) as ∆f̂td = [Γftdftd (h̃td)]−1/2.

3See Eq. (44) of [3], but change π/12 to π/6 (typo). A further factor of 1/5 accounts for detector orientations.
4For a signal-to-noise ratio � 10 (fairly typical of the observations examined in this chapter), and if spins can be

treated as negligible, ∆m/m, ∆M/M � 0.02 [13], and from Eq. (2.3) the influence of ∆m and ∆M on ∆R gives
∆R/R ∼ 0.005. If spins are important these errors increase tenfold, but might be considerably reduced if the a priori
knowledge of m from known NS–NS binaries [15] can be applied to NS–BH systems.

5Bildsten and Cutler [11] estimate that complete disruption would take place in ∼ 1–3 orbital periods, while the
disrupted NS would spread into a ring in ∼ 1–2 periods, significantly reducing the gravity-wave amplitude. These
rough estimates are confirmed qualitatively by numerical simulations of NS–NS binaries (see [11] for references).
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∆R/R (%) for 10 km < R < 15 km
lin. decay exp. decay e. d., n = 1 lin. decay
δf = ftd/6 δf = ftd/2 δf = ftd/2 δf = ftd/2

M \Sn (2) (3) (4) (2) (3) (4) (2) (3) (4) (2) (3) (4)
2.5M�1 12 183 8 20 – 13 243 – 25 213 – 17
10M�2 14 173 10 23 – 17 253 – 21 253 – 19
20M�2 10 16 10 16 143 16 23 – 14 22 253 16
40M�2 7 6 11 11 10 19 20 103 20 17 19 23

1At 65 Mpc. 2At 140 Mpc. 3For 12 km < R < 15 km.

Table 2.1: Fractional uncertainty ∆R/R, averaged over the range 10 km < R < 15 km. Rows:
BH masses; columns: gravity-wave decay models and detector noise curves [labeled by (2)–(4) as in
Fig. 2.1]. No quote is given if ∆R/R > 25%.

We have evaluated ∆f̂td numerically, using the signal model from Eqs. (2.6), (2.7) and the inner

product (2.5) with the LIGO-II noise curves Sn(f) of Fig. 2.1. We have then computed the 2σ range

of the NS radii R from the relation R± = R(m,M, a, f̂td ∓ 2∆f̂td) [Eq. (2.2)]. The uncertainty in

R, defined as ∆R = (R+ −R−)/2, scales roughly linearly with d [because ∆f̂td is proportional to d

through Eqs. (2.4), (2.6)], and is quite sensitive to the choice of the shutoff model [it scales roughly

as (δf)1/2 and is lower for the exponential decay than for the linear one]. In Table 2.1 we report the

fractional uncertainty ∆R/R, averaged over the range 10 km < R < 15 km, for choices of parameters

motivated by the following.

The NS mass m was set to be 1.4M� [15]. The distance d and the BH masses M were chosen

to represent two different scenarios: (i) low-mass BH’s, with M = 2.5M� at 65 Mpc (about one

merger/yr according to Bethe and Brown [19]); (ii) higher mass BH’s, with M = 10, 20, and

40M�, at 140 Mpc (massive main-sequence binaries are thought to produce NS–BH binaries with

M ∼ 10M� and coalescence rates up to about one event/yr out to 140 Mpc, but possibly much

less [20]; capture NS–BH binaries formed in globular clusters might have M as large as hundreds of

M� [21], but with exceedingly uncertain rates). Finally, we considered three different gravity-wave

shutoff models: (i) an optimal-precision model with linear decay and δf = ftd/6 (the lower limit

set by the uncertainty principle on the frequency spread of waves emitted during 3 orbital periods,

supposedly a typical time-scale for complete disruption, cfr. note 5); (ii) a fiducial model with

exponential decay and δf = ftd/2 (a scaling supported by numerical calculations of tidal-disruption

waveforms in NS–NS binaries [5]); this model was also used to evaluate errors for n = 1 polytropes;

(iii) a conservative model with linear decay and δf = ftd/2.

2.4 Conclusion

The estimates for our fiducial decay model suggest that R may be determined with a precision of ∼
15% using the 850 Hz-narrowband LIGO-II configuration [curve (4) of Fig. 2.1], and with a somewhat
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worse precision for wideband LIGO-II [curve (2)]. If the optimal-precision decay model is correct,

the error might be as low as ∼ 6–10%. The usefulness of the 500 Hz-narrowband interferometer

[curve (3) of Fig. 2.1] is limited to the the heavier BH’s or to the larger NS’s, which have lower ftd.

Our estimates are inferior for the Lai-Wiggins compressible polytropes [10] examined in the least

favorable case (n = 1), and for the most conservative decay model; even then, an 850 Hz-narrowband

LIGO-II might be able to provide significant information about R.

The accuracy of our analysis is limited by several factors. Sources of error in the frequency

ftd(m,M, a,R) at which tidal disruption begins to significantly change the inspiral waveforms include

(i) the use of the test-mass approximation for the NS orbit, when actually m �� M , especially for

the low-mass Bethe-Brown case; (ii) the use of the Riemann tensor to compute tidal forces when the

NS diameter is not, typically, small compared to the distance from the NS center to the horizon6;

(iii) the idealization of the NS as a homogeneous or polytropic ellipsoid; (iv) the fact that the point

at which the observed waveforms show a clear deviation from a standard inspiral may actually come

a few orbits earlier (due to tidal coupling) or later than ftd.

Our method presupposes a reliable technique to distinguish a plunge shutoff of the inspiral

waves from a tidal-disruption shutoff. In fact, it seems likely that the tidal-disruption waveform

will actually contain features that not only distinguish it from a plunge shutoff, but that also carry

equation-of-state information which is richer than in our crude model. For example, simulations [5]

of tidal disruption in NS–NS binaries show a spectrum with an inspiral cutoff followed by a valley, a

moderately sharp peak, and a cliff; however, the NS–BH case is likely to be different, and the issue

will ultimately be settled only by detailed numerical simulations.

Given these large uncertainties, our results can only be rough indications of the prospects for

learning about NS’s from tidal-disruption waveforms. They do, however, suggest that observations

of tidal disruption in NS–BH binaries might be possible in 2006–2008 with LIGO-II, and might

yield useful insights into the NS equation of state. The success of this endeavor will require the

development of better theoretical and numerical techniques for modeling NS tidal disruption and

computing the dependence of the disruption waveforms on the NS equation of state; we strongly

advocate such an effort.
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Chapter 3

Numerical evolutions of nonlinear r-modes
in neutron stars

Nonlinear evolution of the gravitational radiation (GR) driven instability in the

r-modes of neutron stars is studied by full numerical 3-D hydrodynamical sim-

ulations. The growth of the r-mode instability is found to be limited by the

formation of shocks and breaking waves when the dimensionless amplitude of the

mode grows to about three in value. This maximum mode amplitude is shown

by numerical tests to be rather insensitive to the strength of the GR driving

force. Upper limits on the strengths of possible nonlinear mode–mode coupling

are inferred. Previously unpublished details of the numerical techniques used are

presented, and the results of numerous calibration runs are discussed.

Originally published as L. Lindblom, J. E. Tohline, and M. Vallisneri, Phys. Rev.

D 65, 084039 (2002).

3.1 Introduction

In recent years, the gravitational radiation (GR) driven instability in the r-modes of rotating neutron

stars has received considerable interest, both as a source of gravitational waves for detectors such as

the Laser Interferometer Gravitational-Wave Observatory (LIGO), and as an astrophysical process

capable of limiting the rotation rates of neutron stars. In any rotating star, the r-modes are driven

towards instability by GR [1, 2]: as the star emits gravity waves (primarily through a gravitomagnetic

effect), the GR reaction acts back on the fluid by lowering the (already negative) angular momentum

of the mode. This in turn causes the amplitude of the mode to grow. In most stars internal dissipation

suppresses the r-mode instability, but this may not be the case for hot, rapidly rotating neutron

stars [3, 4]. For neutron stars with millisecond rotation periods, the timescale for the growth of the

instability is about 40 s. In the absence of any limiting process, GR would force the dimensionless

amplitude of the most unstable (m = 2) r-mode to grow to a value of order unity within about
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ten minutes of the birth of such a star. (At unit amplitude, the characteristic r-mode velocities are

comparable to the rotational velocity of the star.)

The strength of the GR emitted and the timescale on which the neutron star loses angular

momentum and spins down depend critically on the maximum amplitude to which the r-mode

grows. Initial estimates assumed that the amplitude would grow to a value of order unity before

an undescribed nonlinear process saturated the mode. After saturation, it was assumed that the

spindown would proceed as a quasi-stationary process, reducing the angular velocity to one tenth of

its initial value within about one year. In this scenario, gravitational waves from spindown events

might be detectable with LIGO II [5].

However, at present no one knows with certainty how large the amplitude of the r-modes will

grow. It may well be that the nonlinear hydrodynamics of the star might limit the growth of r-

modes to very small values. This could happen, for instance, if the r-modes were to leak energy

by nonlinear coupling into other modes faster than GR reaction could restore it. In this case the

r-mode instability would not play any interesting role in real astrophysical systems.

In a short paper [6], we presented the preliminary results of fully nonlinear, three-dimensional

numerical simulations aimed at investigating the growth of r-modes. In our simulations, we modeled

a young neutron star as a rapidly rotating, isentropic, Newtonian polytrope; we added a small-

amplitude seed r-mode and we solved the hydrodynamic equations driven by an effective GR reaction

force. We found that r-mode saturation intervenes at amplitudes far larger than expected (∼ 3),

supporting the astrophysical relevance of r-modes and the possibility of detecting r-mode gravity

waves. The details of the GR signature emitted by the r-mode instability that we observe in

our simulations are rather different than previously envisioned, and these details suggest that this

radiation may be more easily detected than previously thought: the radiation is more monochromatic

and is emitted in a shorter, more powerful burst (see Ref. [6] and the final section of this chapter).

Our results are compatible with the conclusions of Stergioulas and Font [7], who performed

relativistic simulations of r-modes on a fixed neutron-star geometry, and found no saturation even

at large amplitudes. A second point of comparison can be made with the work of Schenk and

colleagues [8]. They have attacked the problem analytically, developing a perturbative formalism to

study the nonlinear interactions of the modes of rotating stars, and proving that the couplings of

r-modes to many other rotational modes are small (they are forbidden by selection rules, or they

vanish to zeroth order in the angular velocity of the star).

This chapter is an expanded account of the results first presented in Ref. [6]: throughout these

pages, we describe our simulations in greater detail; we discuss their relevance and their limitations

in the light of Refs. [7, 8]; and we present the results of several additional simulations aimed at

enlightening particular aspects of the problem. In Sec. 3.2 we write down the basic hydrodynamic

equations, and we define a number of mathematical quantities that will be used to monitor the
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nonlinear evolution of the r-modes. In Sec. 3.3 we implement the effective current-quadrupole

gravitational radiation-reaction force. In Sec. 3.4 we integrate the fluid equations with r-mode initial

data in slowly rotating stars, and we compare the results with the small-amplitude, slow-rotation

analytical expressions: we demonstrate that the integration reproduces faithfully the analytical

predictions to the expected degree of accuracy. In Secs. 3.5–3.8 we study the nonlinear evolution

of r-mode initial data in rapidly rotating stars, concentrating on the nonlinear saturation of the

r-modes, and analyzing in detail the evolution of several hydrodynamical quantities. Finally, we

summarize our conclusions in Sec. 3.9.

3.2 Basic hydrodynamics

We study the solutions to the Newtonian fluid equations,

∂tρ+ �∇ · (ρ�v) = 0, (3.1)

ρ
(
∂t�v + �v · �∇�v) = −�∇p− ρ�∇Φ + ρ�FGR, (3.2)

∂tτ + �∇ · (τ�v) = 0, (3.3)

where �v is the fluid velocity, ρ and p are the density and pressure, Φ is the Newtonian gravitational

potential, and �FGR is the gravitational radiation reaction force. Equation (3.3) is a recasting of the

energy equation for adiabatic flows, where τ is the entropy tracer [9]; for polytropic equations of

state, τ is related to the internal energy (per unit mass) ε by the relation τ = (ερ)1/γ , where γ is the

adiabatic exponent. The Newtonian gravitational potential is determined by Poisson’s equation,

∇2Φ = 4πGρ, (3.4)

while the gravitational radiation reaction force will be discussed in Sec. 3.3.

We solve Eqs. (3.1)–(3.4) numerically in a rotating reference frame, using the computational

algorithm developed at LSU to study a variety of astrophysical hydrodynamic problems [10]. The

code performs an explicit time integration of the equations using a finite-difference technique that

is accurate to second order both in space and time, and uses techniques very similar to those of the

familiar ZEUS code [11]. For most of our simulations, we adopt a cylindrical grid with 64 cells in

the radial direction, and 128 cells in the axial and azimuthal directions.

In the limit of slow rotation, we define the r-modes of rotating Newtonian stars (using the

normalization of Lindblom, Owen and Morsink [3]) as the solutions of the perturbed fluid equations
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having the Eulerian velocity perturbation

δ�v = α0RΩ0

( r
R

)l
�Y Bll e

iω0t, (3.5)

where R and Ω0 are the radius and angular velocity of the unperturbed star, α0 is the dimensionless

r-mode amplitude, and �Y Bll is a vector spherical harmonic of the magnetic type, defined by

�Y Blm = [l(l + 1)]−1/2r�∇× (r�∇Ylm). (3.6)

The r-mode frequency is given by [12]

ω0 = − (l − 1)(l + 2)
l + 1

Ω0. (3.7)

To monitor the nonlinear evolution of the r-modes, it is helpful to introduce nonlinear general-

izations of the amplitude and frequency of the mode. These quantities are defined most conveniently

in terms of the current multipole moments of the fluid,

Jlm =
∫
ρrl�v · �Y B∗

lm d3x. (3.8)

In slowly rotating stars, the J22 moment is proportional to the amplitude of the m = 2 r-mode, the

most unstable mode, and the one that we will study. To track the evolution of this mode even in

the nonlinear regime, we define the normalized, dimensionless amplitude

α =
2|J22|

J̃MR3Ω0

, (3.9)

where M is the total mass of the star and J̃ is defined by

J̃MR4 =
1
4π

∫
ρr4d3x �

∫
ρr6dr. (3.10)

The quantity J̃ is evaluated once and for all at the beginning of each of our evolutions. For slowly

rotating stars, the definition (3.9) of the mode amplitude reduces to the one given by Eq. (3.5).

In slowly rotating stars, and in all situations where the leading contribution to J22 comes from

the m = 2 r-mode, the time derivative dJ22/dt is proportional to the frequency of the mode:

dJ22/dt = iωJ22. Thus we are led to define the nonlinear generalization of the r-mode frequency as

ω = − 1
|J22|
∣∣∣∣dJ22

dt

∣∣∣∣ . (3.11)

As shown by Rezzolla et al. [14], we can re-express dJ22/dt as an integral over the standard fluid
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variables,

J
(1)
22 ≡ dJ22

dt
=
∫
ρ
[
�v · (�∇�Y B∗

22

) · �v − �∇Φ · �Y B∗
22

]
d3x. (3.12)

The definitions, Eqs. (3.9) and (3.11), of mode amplitude and mode frequency are very stable numer-

ically, because they are expressed in terms of integrals over the fluid variables. In the Appendix, we

give explicit expressions for J22 and J (1)
22 in the cylindrical coordinate system used in our numerical

analysis.

While we monitor the nonlinear evolution of the r-mode, we are also interested in tracking the

star’s average angular velocity as well as its degree of differential rotation. With this in mind, we

define the average angular velocity

Ω̄ ≡ J/I, (3.13)

where the angular momentum and the moment of inertia are given respectively by

J =
∫
ρ�2Ω(�, z, ϕ)d3x, (3.14)

I =
∫
ρ�2d3x. (3.15)

Here � is the cylindrical radial coordinate, and the local angular velocity Ω(�, z, ϕ) ≡ vϕ̂/�, where

vϕ̂ is the proper azimuthal component of the fluid velocity. We also define the average differential

rotation ∆Ω as the weighted variance of Ω,

(
∆Ω
)2 = I−1

∫
ρ�2
(
Ω − Ω̄
)2
d3x

= I−1

∫
ρ�2Ω2d3x− Ω̄2. (3.16)

3.3 Radiation-reaction force

The gravitational radiation-reaction force due to a time-varying current quadrupole is given by the

expression

FGR
a = κ

16
45
G

c7

(
2vjεjalxmS

(5)
lm + vjεjklxkS

(5)
la

−vjεaklxkS(5)
lj − εaklxkxmS

(6)
lm

)
, (3.17)
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see Blanchet [13], and Eq. (20) of Rezzolla et al. [14]. Here S(n)
jk represents the n’th time derivative

of the current quadrupole tensor,

Sjk =
∫
ρ(�x× �v)(jxk)d3x; (3.18)

εjkl is the totally antisymmetric tensor, and the vector xk represents the Cartesian coordinates of

the point at which the force is evaluated. The parameter κ that appears in Eq. (3.17) has the value

κ = 1 in general relativity. For reasons discussed below, we find it useful to consider other values of

κ in our numerical simulations.

We find that a straightforward application of Eq. (3.17) in numerical evolutions is nearly impos-

sible. There are two problems: first, it is very hard to evaluate reliably time derivatives of such a

high order; second, various sources of numerical noise (even small errors in the initial equilibrium

configuration of the fluid, and the numerical drift of the center of mass) can generate contributions

to the current quadrupole tensor that overwhelm those of the pure r-mode motion. So we need to

introduce special numerical techniques and simplifications to overcome these problems.

In order to reduce the influence of extraneous noise sources on the evolution, it is helpful to re-

express the current quadrupole tensor in terms of the current multipole moments defined in Eq. (3.8).

There is a one-to-one correspondence between the J2m current multipoles and Sij :

Syy − Sxx + 2iSxy =

√
16π
5
J22, (3.19)

Sxz − iSyz =

√
4π
5
J21, (3.20)

Sxx + Syy = −Szz =

√
8π
15
J20. (3.21)

In a slowly rotating star, them = 2 r-mode excites J22, but not J21 and J20. In contrast, the principal

sources of numerical noise contribute primarily to J20. Thus, we evaluate only the J22 contribution

to �FGR: we use Eq. (3.17) to evaluate �FGR, taking the Sij determined from Eqs. (3.19)–(3.21), but

setting J21 = J20 = 0. We find that this scheme reduces considerably the numerical noise in the

radiation reaction force, and reproduces faithfully the analytical description of r-modes in slowly

rotating stars (see Sec. 3.4).

The second major problem is evaluating the numerical time derivatives of Sjk, or equivalently the

time derivatives of J22. Whenever the radiation-reaction timescale is much longer than the r-mode

period 2π/ω, the dominant contribution to the derivatives S(n)
jk comes from terms proportional to

powers of the r-mode frequency:

S
(n)
jk ≈ (iω)nSjk, J

(n)
22 ≈ (iω)nJ22. (3.22)
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Parameter Symbol Slow Fast
C1, C2 C3–C8

polytropic index n 1 1
total mass M 1.4M� 1.4M�
equatorial radius Req 12.7 km 18.4 km
polar R/equatorial R Rpol/Req 0.98 0.59
nonrotating1 R R0 12.5 km 12.5 km
angular velocity Ω0 1.45 krad/s 5.34 krad/s
rotation period P0 4.32 ms 1.18 ms
energy ratio Trot/|W | 3.98 × 10−3 0.10072
simulation RR timescale τ

(s)
RR 0.459P0 9.4374P0

physical RR timescale τ
(p)
RR 2.8 × 107P0 4.2 × 104P0

Table 3.1: Physical parameters for the equilibrium models.

Even when the r-mode amplitude becomes large, the expression (3.22) will be accurate as long

as the timescale for the evolution of α and ω is longer than 2π/ω. Now, J22 and J
(1)
22 are easily

evaluated using the integral expressions in Eqs. (3.8) and (3.12); thus, the time derivatives needed in

Eq. (3.17) are given simply by J (5)
22 = ω4J

(1)
22 and J (6)

22 = −ω6J22, where we determine ω numerically

using Eq. (3.11). In the Appendix, we present explicit expressions for the components of the effective

radiation-reaction force in cylindrical coordinates.

3.4 Calibration runs

In order to test the accuracy of our hydrodynamic evolution code and of our approximations for the

gravitational radiation-reaction force, we investigate the evolution of a small-amplitude r-mode in a

slowly rotating star.

We provide initial data for this study by solving the time-independent fluid equations for a slowly,

rigidly rotating stellar model. We model the neutron star as an n = 1 polytrope, generated by the

self consistent field technique developed by Hachisu [15]. Table 3.1 shows the physical parameters

for this model, labeled Slow ; in particular, the ratio of rotational kinetic energy to gravitational

binding energy is Trot/|W | = 0.00398, and the angular velocity is 26% of the maximum possible

value (estimated as Ωmax = 2
3

√
πGρ̄).

We then adjust the velocity field of this equilibrium model by adding the velocity perturbation

of an m = 2 r-mode of amplitude α0:

�v = �Ω0�eϕ̂ + α0RΩ0

( r
R

)2
Re(�Y B22 ). (3.23)

In the Appendix, we write out explicitly the components of this initial velocity field in our cylindrical

coordinate system. Because Eq. (3.23) is the exact representation of a pure m = 2 r-mode only in
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Figure 3.1: Evolution of the r-mode amplitude in a slowly rotating star. The solid curves plot the
results of numerical evolutions (with and without gravitational radiation reaction) while the dashed
curves plot the analytical predictions. For the curves marked “free,” κ = 0; for the curves marked
“forced,” κ � 6 × 107.

the small-amplitude, small-rotation limit, we expect that the frequency and the amplitude measured

in our numerical experiment using Eqs. (3.9)–(3.11) will be different from their theoretical values

α0 and − 4
3Ω0 by terms of order O(α2), and O(Ω2/Ω2

max).

We perform two numerical integrations of the equations of motion, for this slowly rotating initial

configuration. In the first run (C1), we let the star evolve under purely Newtonian hydrodynamics,

setting the strength κ of the radiation reaction (3.17) to zero. In the second run (C2), we force the

mode by setting κ � 6× 107. With this unphysically large value the amplitude of the r-mode grows

appreciably within a time that we can conveniently follow numerically. (The Courant limit for the

evolution timestep is set by the speed of sound in the fluid, and by the size of the grid cells; for

Ω0 = 0.26Ωmax, one complete rotation of the star takes about 70000 timesteps).

Figure 3.1 illustrates the evolution of the mode amplitude α in runs C1 and C2, as a function

of t/P0, where P0 = 2π/Ω0 is the initial rotation period of the star. The solid curves trace the

numerical evolution of α [as defined in Eq. (3.9)], whereas the dashed curves trace the theoretical

predictions for this evolution, obtained in the small-amplitude, slow-rotation limit [3].

When κ = 0, the theoretical prediction for the evolution of the amplitude is just α = α0, and we

can verify that the numerical evolution tracks the analytical curve within the expected deviations

of order α2. When κ �= 0, the analytical prediction for the evolution of the amplitude is

α = α0e
t/τGR , (3.24)
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Figure 3.2: Real and imaginary parts of the current multipole moment J22 (in arbitrary units), for
a slowly rotating star evolved without gravitational radiation reaction (run C1). The solid curves
trace the numerical evolutions, the dashed curves trace the analytical predictions.

where the radiation-reaction timescale is given by [3]

1
τGR

= 2π
(

256
405

)2

κ
G

c7
J̃MR4Ω6

0. (3.25)

For this model, τGR = 0.46P0. As we can see in Fig. 3.1, the numerical evolution tracks the small-

amplitude, slow-rotation analytical result within the expected accuracy, even if the radiation-reaction

force is so unphysically strong.

Although this slow rotation numerical evolution was only carried out over a small fraction (0.2) of

a rotation period (and therefore over a small fraction of the r-mode oscillation period), the evolution

extended for about 7.3 dynamical times and 4.6 sound-crossing times.

In Figs. 3.2 and 3.3, we display two additional diagnostics for the undriven (κ = 0) slow-rotation

evolution (C1). In Fig. 3.2 we plot the real and imaginary parts of the current multipole moment

J22: the solid curves trace the numerical evolution, whereas the dashed curves trace the analytical

expression

J22 =
1
2
αMR3J̃Ω0e

iωt. (3.26)

Again the deviations are within the expected accuracy of the analytical results. The deviations

appear to be caused by the excitation of modes other than the pure m = 2 r-mode; the spurious

excitations appear because the initial data [Eq. (3.23)] are only accurate to first order in α. Figure 3.3

depicts the evolution of the frequency ω [as defined in Eq. (3.11)]. The deviations from the analytical

result, ω0 = − 4
3Ω0, are within the expected accuracy. The magnified scale used to display ω in

Fig. 3.3 makes the presence of the small-amplitude, short-period extraneous modes quite apparent.
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Figure 3.3: Frequency of the m = 2 r-mode, for a slowly rotating star evolved without gravita-
tional radiation reaction (run C1). The solid curve is determined numerically from Eq. (3.11). For
comparison, the dashed line shows the analytical value ω0 = − 4

3Ω0.

3.5 Evaluating the saturation amplitude

In our production runs, we investigate the nonlinear behavior of the r-mode in a rapidly rotating

stellar model, under a variety of physical conditions (different initial amplitudes and different values

for the radiation-reaction coefficient κ).

Again, we provide initial data by solving the time-independent fluid equations for an n = 1 poly-

trope. The physical parameters for this model, labeled Fast, are reported in Table 3.1; in particular,

the ratio of rotational kinetic energy to gravitational binding energy is Trot/|W | = 0.10072, and the

angular velocity is 95% of its maximum value.

We perform a numerical integration of the equations of motion starting from the rapidly rotating

initial configuration, Fast, using Eq. (3.23) to add a slow-rotation, small-amplitude r-mode field, with

α0 = 0.1. Because the radiation-reaction force is so much stronger for this model (it is proportional

to ω6 ∝ Ω6), we find that we can set κ = 4487, which yields an r-mode growth time τ (s)
RR = 9.43P0.

This choice of κ is still much larger than its physical value (unity), but it should yield a reasonable

picture of the nonlinear evolution of the r-mode, if the timescales for all the relevant hydrodynamical

processes (including nonlinear couplings to other modes) are comparable to P0, or shorter. Indeed,

if the average sound-crossing time τS is representative of the relevant hydrodynamical timescales,

then our condition is satisfied: a rough estimate gives τS = R0/c̄S � 0.16P0 � τ
(s)
RR/60, where we

have approximated c̄S as the average speed of sound in the equivalent spherical polytrope.
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Figure 3.4: Numerical evolution of ReJ22 (arbitrary units) for a rapidly rotating star driven by
gravitational radiation reaction (production run C3). The sinusoidal approximation, used to compute
ω and J (n)

22 , is evidently appropriate for this run.
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Figure 3.5: Numerical evolution of the r-mode amplitude α in production run C3.
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Figure 3.6: Evolution of total mass, total angular momentum, and total kinetic energy in production
run C3. The quantities are plotted as fractions of their initial value.

3.5.1 Evolution of the r-mode amplitude

We follow the evolution through t = 33P0. Because the rotation of the star is progressively reduced by

radiation reaction, and because the star develops differential rotation, at the end of the evolution the

star has performed, on the average, only about 31 rotations [we obtain this number from
∫

Ω̄dt/(2π)].

In Fig. 3.4 we plot the numerically determined evolution of ReJ22: the curve is a very smooth

sinusoid, whose frequency is essentially constant, and whose envelope is determined by the (relatively

slow) evolution of the r-mode amplitude. So the approximations used to compute ω and J
(n)
22

(discussed in Sec. 3.3) are in fact quite good in this situation.

In Fig. 3.5 we plot the numerical evolution of the r-mode amplitude α. At the beginning of the

evolution, the computed diagnostic α agrees with the theoretical value α0 to ∼ 10%, within the

expected accuracy. The growth is exponential (as predicted by perturbation theory) until α ≈ 1.8.

Then some nonlinear process begins to limit the growth, until the amplitude peaks at α = 3.35 and

then falls rapidly within a few rotation periods. After this the r-mode is effectively not excited.

3.5.2 A mechanism for r-mode saturation

What nonlinear process is responsible for the behavior of the r-mode amplitude? What causes the

mode to saturate and disappear from the star? To answer these questions, we study the evolution

of the total mass, total angular momentum, and total kinetic energy of the star, which are plotted

in Fig. 3.6.

Because the mass is constant, the damping of the r-mode cannot be caused by ejection of matter

from the simulation grid. On the other hand, we expect that the star should lose energy and angular
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Figure 3.7: Theoretical and numerical evolution of the total energy for production run C3. The
total energy is plotted in units of the initial rotational energy (because the system is bound, Etot

must be negative).

momentum as it radiates gravitational radiation in accord with the prediction of general relativity

[14, 17]: (
dE

dt

)
J22

=
|ω|
2

(
dJ

dt

)
J22

= −128π
225

G

c7
κω6|J22|2. (3.27)

The evolution of the angular momentum mirrors this equation quite closely (within a few percent);

for energy, however, Eq. (3.27) is only accurate until shortly after the catastrophic fall of the r-mode

amplitude (at t � 28P0; see Fig. 3.7). Before that time, the star loses about 40% of its initial angular

momentum and 36% of its initial kinetic energy. After that time, the amplitude and (therefore) the

radiation-reaction force are much reduced, so J becomes essentially constant; however, the kinetic

energy continues to decrease, losing an additional 12% of its initial value during the next three

rotation periods.

If the r-mode were damped by a hydrodynamical process that conserved energy, such as the

transfer of energy to other modes, then Eq. (3.27) should portray accurately the evolution of the

kinetic energy. But this is not what we see: instead, some purely hydrodynamic process continues to

decrease the energy (by a sizable amount!) after the gravitational-radiation losses become negligible.

We believe that we have identified this process. To first order in the amplitude, the r-mode is

only a velocity mode; to second order, however, there is also an associated density perturbation,

proportional to Y32, which appears as a wave with four crests (two in each hemisphere) on the

surface of the star. (We will present a quantitative analysis later in this section.) As the amplitude

reaches its maximum, these crests become large, breaking waves: the edges of the waves develop

strong shocks that dump kinetic energy into thermal energy. In doing so they damp the r-mode.

Figure 3.8 illustrates the surface waves at t = 28P0 and t = 29P0 along selected meridional slices.
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Figure 3.8: Isodensity surfaces showing breaking waves near the end of production run C3.

Our code is written in such a way that the evolution of the shocks is always kinematically correct.

In particular, the continuity equation ensures that mass is properly conserved, and that the proper

density jump occurs across the shocks; and the Euler equation ensures that momentum is properly

conserved, and that the proper pre- and post-shock velocities arise. However, our code does not

allow the energy dissipated in the shock to increase the entropy of the fluid, which remains always

barotropic and isentropic. Consequently, the presence of shocks shows up as a decrease in the total

energy of the star. Indeed, in this production run (C3) gravitational radiation reduces the total

energy by 9% of its initial magnitude through t = 28P0, and dissipation in shocks subtracts a

further 3% in the last three rotations. (For comparison, 12% of the initial kinetic energy is lost in

the last three rotations compared to 36% before that time.)

Ignoring the thermal effects of shocks is useful to reduce the computational burden and the

complexity of the hydrodynamic code, and it is in fact a fairly reasonable approximation for neutron

star matter, where the pressure comes mostly from the Fermi pressure of the degenerate neutrons,

so the equation of state can be effectively modeled as temperature independent.

3.5.3 Radial structure of the r-mode amplitude

We define the radial amplitude density α(r) (where r is the spherical radius) by expressing the

integral Eq. (3.8) for J22 in spherical coordinates, and omitting the radial integration:

α(r)eiφ(r) =
2

J̃MR2Ω0

∫
ρr2�v · �Y B∗

22 r2 sin θdθ dϕ. (3.28)

We removed the absolute value around the integral for J22 so that we can keep track of the local

mode phase φ(r). With this definition, α exp[iφ] =
∫
α(r) exp[iφ(r)]dr/R, where φ is the global
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Figure 3.9: Radial amplitude density α(r) of the m = 2 r-mode for production run C3 at t = 22.5P0.

phase of the r-mode.

The amplitude α(r) is plotted in Fig. 3.9 for the production run C3 at the time t = 22.5P0.

Throughout the entire evolution, the mode is concentrated mostly between the spherical radii r =

0.5R and 0.9R, and the shape of α(r) is fitted reasonably well by taking δv ∝ (r/R)2 [see Eq. (3.5)]

and ρ ∝ (sinπr/R)/(πr/R) as appropriate for a spherical, n = 1 polytrope.

It is also interesting to study the phase coherence of the r-mode, which we define as

(∆φ)2 =

∫
α(r)
∣∣eiφ(r) − eiφ

∣∣2dr∫
α(r)dr

. (3.29)

Figure 3.10 plots the evolution of ∆φ, which is small until the r-mode saturates at t ≈ 26P0. For

∆φ ≈ 1, the local phase φ(r) spans approximately 2π: the mode has lost coherence completely. In

this situation, there are large regions in the star where the radiation-reaction force pushes out of

phase with the local mode oscillations; this mismatch accelerates the damping of the mode.

3.5.4 Evolution of the r-mode frequency

Figure 3.11 shows the numerical evolution of the r-mode frequency ω. The evolution of ω is quite

smooth when the amplitude of the r-mode is large; when the amplitude is small (for t � 10P0 and

for t � 28P0), we see that other modes make noticeable contributions to J22, and therefore to ω. At

the beginning of the run, the numerical ω matches the theoretical prediction to within the expected

accuracy of about 10%. These values for the frequency are also consistent with those obtained via

a Fourier transform of J22 [18].

Surprisingly, the r-mode frequency remains approximately constant throughout the evolution,
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Figure 3.10: Evolution of the phase-coherence function ∆φ in production run C3.
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Figure 3.11: Numerical evolution of the r-mode frequency ω in production run C3.
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Figure 3.12: Numerical evolution of the average stellar angular velocity Ω̄ in production run C3.

and it does not follow the decline of the average angular velocity Ω̄ (plotted in Fig. 3.12). Altogether,

the angular velocity decreases by about 22.5% while the total angular momentum decreases by 40%.

(As the star spins down, it becomes less flattened, and the change in the moment of inertia accounts

for the difference between the decrease of J and that of Ω̄.) The stability of the r-mode frequency

has important implications for the possible detection of r-mode gravity waves (see Sec. 3.9).

We also point out that the approximate expressions for the GR reaction force, Eqs. (3.17)–

(3.22), that we use here are accurate only when the motion of the fluid has nearly sinusoidal time

dependence. Figure 3.11 illustrates that the evolution in our simulation remains quite sinusoidal until

about t = 28P0. After this point our expression for the GR reaction force is not reliable. After this

point in our simulation, however, the fluid evolution is dominated by nonlinear hydrodynamic forces

including shocks, and the GR reaction force is negligible. Thus our inability to model accurately

the GR force during the late stages of the evolution does not effect our results.

3.5.5 Growth of differential rotation

During this simulation (run C3), the average differential rotation ∆Ω [defined in Eq. (3.16)] grows to

a maximum of approximately 0.41Ω̄ (see Fig. 3.13). After a rapid increase in the first three rotation

periods, when the linear r-mode eigenfunction of Eq. (3.23) evolves into its proper nonlinear, rapid-

rotation form, ∆Ω/Ω̄ increases approximately as α0.75 until α � 1, and then approximately as α

until α begins to saturate. When α is maximum, ∆Ω = 0.25Ω̄. As the amplitude falls, ∆Ω continues

to grow (even more steeply), as long as there is significant gravitational radiation. After t = 28P0,

∆Ω decreases to about 80% of its peak value. So the final configuration of the star (where the

presence of the r-mode is essentially negligible) still has a very large differential rotation.

But we should not concentrate exclusively on the averaged quantity ∆Ω/Ω̄, which does not cap-
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Figure 3.13: Numerical evolution of the differential rotation ∆Ω in production run C3.
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Figure 3.14: Meridional structure of the differential rotation in production run C3. The plot shows
the value of the azimuthally averaged angular velocity Ω(�, z)/Ω̄, at time t = 25.6P0.
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ture fully the spatial structure of differential rotation. Figure 3.14 illustrates the spatial dependence

of the azimuthally averaged angular velocity,

Ω(�, z) =
1
2π

∫
Ω(�, z, ϕ) dϕ, (3.30)

at the time when the amplitude is maximum, t = 25.6P0. The differential rotation is confined mostly

to a thin shell of material near the surface of the star, and is particularly concentrated near each

polar cap. The bulk of the material in the star remains fairly rigidly rotating.

3.5.6 Consistency of the radiation-reaction force

In these simulations we have assumed that the only relevant contribution to the radiation reaction

force comes from the current quadrupole moment, and in particular from J22. However, in the post-

Newtonian approximation to general relativity, the lowest-order contribution to radiation reaction

comes from the mass quadrupole term, followed by mass octupole and current quadrupole. To

verify that our approximation is justified for the physical states considered here, we evaluate the

additional energy that would have been lost to gravitational waves throughout our simulation if we

had included the lowest-order mass multipole terms.

The mass multipole moments Qlm are defined by

Qlm =
∫
ρrlY ∗

lmd
3x. (3.31)

In the presence of density oscillations with sinusoidal dependences in the coordinates t and ϕ (i.e.,

δρlm ∝ eiωlmt+imϕ) the flux of energy into gravitational waves is given by [19, 20]

(
dE

dt

)
Q2m

= −8π
75

G

c5
ω6

2m|Q2m|2; (3.32)(
dE

dt

)
Q3m

= − 8π
6615

G

c7
ω8

3m|Q3m|2. (3.33)

where Q2m and Q3m are, respectively, the mass quadrupole and mass octupole moments induced

by these density fluctuations. Contributions of higher order are suppressed by very small fractional

coefficients.

Comparing Eqs. (3.32) and (3.33) with Eq. (3.27) we find that the contribution of the density

oscillations associated with the r-mode at frequency ω to the energy flux is negligible whenever

3c2

16
|Q2m|2
|J2m|2 � 1,

5ω2

2352
|Q3m|2
|J2m|2 � 1. (3.34)

We find that in our simulation both ratios are of order 10−3 before the r-mode saturates (at
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t � 25P0). The strongest contribution to the quadrupole term comes from Q22, although the

Fourier transform of this moment does not show any definite frequency of oscillation. The strongest

contribution to the octupole term comes from the Y32 dependence of the density in the m = 2

r-mode (see the next subsection).

Between t � 25P0 and t � 32P0 (when α is back to its initial value ≈ 0.1) the mass quadrupole

term would have provided a correction of order 10% to the current quadrupole; although even then

we see no evidence of a definite oscillation frequency correlated to the r-mode. Only after t � 32P0,

when the fluid motion in the star becomes quite turbulent and the r-mode is very weak, is the

gravitational radiation generated by the mass multipoles comparable to the radiation from J22.

On the whole, we find that our approximation, which ignores the contributions from the mass

multipoles, is well justified throughout the more interesting part of the evolution.

3.5.7 Density oscillations and mode saturation

The evolution of the isodensity surfaces in our neutron star shows very clearly the presence of the

lowest-order Eulerian density perturbation δρ associated with the m = 2 r-mode. The lowest order

expression for δρ was derived by Lindblom, Owen and Morsink [3] in the small-amplitude, slow-

rotation approximation. Solving Eq. (5) of Ref. [3] with m = 2 and with polytropic index n = 1,

and then substituting δΨ back into Eq. (4) of Ref. [3], we get

δρ = α0
7π2

15

√
2
3

Ω2
0

G
j3

(
πr

R0

)
Y32(θ, ϕ)eiωt, (3.35)

where j3 is the spherical Bessel function. The mass multipole associated with this δρ is

δQ32 = α0
7π
15

√
2
3

Ω2
0R

5
0

G
j4(π)Y32(θ, ϕ)eiωt, (3.36)

where j4(π) = 0.151425.

We study the evolution of Q32 throughout run C3. We find that Q32 (and therefore the density

perturbation with angular dependence given by Y32) is indeed proportional to α, at least as long

as the growth of α remains exponential; after that, Q32 grows more slowly than α, and it reaches

a maximum a few rotation periods before α (see Fig. 3.15). The phase evolution of the density

perturbation is also consistent with expectations: the Fourier transform of Q32(t) shows a very

definite peak at the r-mode (numerical) frequency ω.

A quantitative check shows that Eq. (3.36) predicts the observed magnitude of Q32 with an

accuracy of about 50%; this error is consistent with the next-order terms (∼ Ω4 and α2) not included

in this expression. In the slowly rotating calibration model C1, we find that Q32 is given by Eq. (3.36)

to within about 1%.
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Figure 3.15: Numerical evolution of the mass moment Q32 (solid line) and of the r-mode amplitude
α, in production run C3. The curve for Q32 was renormalized to emphasize the linear relation
between α and Q32 during the growth of the r-mode.

We point out that we do not explicitly include any density perturbation in the initial configuration

of the star; rather, the density perturbation is immediately generated by the hydrodynamic evolution

of the fluid as a consequence of the initial velocity perturbation. The evolution of the amplitude

of the density perturbation amplitude provides more insight into the mechanism that causes the

r-mode to saturate: on the surface of the star, δρ appears as four large wave crests; at a critical

amplitude these crests stop growing, and within a few rotation periods they turn into breaking waves

that damp the r-mode.

3.5.8 Limits on mode–mode coupling

In the numerical evolution C3, nonlinear hydrodynamic processes do not prevent the gravitational

radiation instability from driving the dimensionless amplitude of the r-mode to values of order

unity. In particular, the energy of the r-mode is not channeled into other modes by nonlinear

hydrodynamic coupling until the amplitude of the mode becomes quite large. It is possible however

that the nonlinear processes that would limit the growth of the r-mode act only on timescales that

are longer than our artificially brief simulation growth time τ (s)
RR, but still shorter than the physical

τ
(p)
RR.

Can our numerical simulation place any limits at all on the possibility of nonlinear coupling? We

know that in our simulation the amplitude of the r-mode grows exponentially until α ≈ 2, so the

nonlinear interaction with other modes must be negligible at least until that time. This observation

allows us to set a limit on the strength of the nonlinear couplings between the modes; and from
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this limit we can infer a lower limit on the saturation amplitude that may be achieved when the

radiation-reaction coupling is adjusted to its physical value. Of course, the inference is only justified

for the nonlinear interaction of the r-mode with other modes that are correctly modeled in our

simulation (for instance, the finite azimuthal resolution of the grid sets an upper limit on the m

of the modes that can be resolved), and with our physical assumptions (for instance, the buoyant

g-modes of realistic neutron stars will not be present with our choice of the equation of state).

Our argument is based on the Lagrangian description of the nonlinear evolution of the mode

amplitude developed by Schenk et al. [8]. In this formalism, the modes interact at the lowest order

by way of three-mode couplings : roughly speaking, quadratic interactions between pairs of modes

drive the evolution of the amplitude of a third mode. Because at the beginning of our simulation

all modes except the r-mode have negligible amplitude, we expect that the most important three-

mode nonlinear term might be one that couples two r-modes to a third mode [8]. Following Ref. [8]

we consider the coupled equations for the r-mode and a generic mode X obtained in second-order

Lagrangian perturbation theory:

dcR
dt

+ iωRcR =
cR
τRR

+
iωR
2
κ∗XRR
εR

c∗Rc
∗
X , (3.37)

dcX
dt

+ iωXcX =
iωX
2

κ∗XRR
εX

c∗Rc
∗
R, (3.38)

where cR and cX are the complex amplitudes (including phases) of the modes; ωR and ωX are their

frequencies; εR and εX are the nonlinear mode energies at unit amplitude; and τRR is the radiation-

reaction e-folding time of the r-mode. Finally, κ∗XRR is the nonlinear interaction energy for unit

amplitude modes. Schenk, et al. [8] give expressions for the κXRR of coupled generic Newtonian

modes in rotating stars. In writing Eqs. (3.37) and (3.38) we have omitted the coupling terms

proportional to κ∗XXR, which are forbidden by a z-parity selection rule [8]: the r-mode has odd z

parity, so it cannot couple quadratically to the mode X .

From our numerical evolution C3, we know that the amplitude of the r-mode grows very nearly

exponentially until α � 2:

cR(t) � cR(0)e−iωRt+t/τ
(s)
RR , (3.39)

where τ (s)
RR is the artificially short radiation-reaction timescale used in our simulation. (Although it

is convenient to take |cR| � α, our argument still applies as long as |cR| is merely proportional to

α.) Therefore, we also know that until |cR| � 2, the second term on the right side of Eq. (3.37) is

negligible compared to the first. In this case,

1

τ
(s)
RR

�
∣∣∣∣ iωR2 κ∗XRR

εR
c∗X

∣∣∣∣ . (3.40)
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We now use Eq. (3.39) to integrate Eq. (3.38) and compute cX :

cX(t) = cX(0)e−iωXt

+
iωX
2

κ∗XRR
εX

[c∗R(t)]2 − [c∗R(0)]2e−iωXt

2iωR + iωX + 2/τ (s)
RR

. (3.41)

Now we set cX(0) � 0 and |cR(t)| � |cR(0)| for the time late in the simulation when cR � 2, and

find

|cX(t)| �
∣∣∣∣κ∗XRRεX

∣∣∣∣ |ωX |τ (s)
RR|c∗R(t)|2

2
√(

τ
(s)
RRδω
)2 + 4

, (3.42)

where δω ≡ 2ωR+ωX . We define the resonance index γ(s) = |ωR/ωX |[(τ (s)
RRδω)2 +4]1/2, whose value

is close to unity, γ(s) � 1, when the system is near resonance, δω � 0. We use this bound on |cX(t)|
in Eq. (3.40) to obtain

1

τ
(s)
RR

� |κ∗XRR|2
4εXεR

ω2
Rτ

(s)
RR

|c∗R(t)|2
γ(s)

. (3.43)

We can rewrite this inequality in terms of the r-mode period PR = 2π/ωR:

[
PR

τ
(s)
RR

]2
� π2 |cR(t)|2

γ(s)

∣∣∣∣κ∗XRRεX

∣∣∣∣2 εXεR . (3.44)

We now set |cR(t)| = 2 (the value at which the evolution of the amplitude begins to show deviation

from exponential) and PR/τ
(s)
RR = 1/10 (the value for our simulation), and obtain

∣∣∣∣κ∗XRRεX

∣∣∣∣2 εXεR � γ(s)

400π2
. (3.45)

Thus, our numerical evolution puts a limit on the strength of the coupling between the r-mode and

other modes in the star.

We now ask how the saturation amplitude would change if the radiation-reaction timescale

assumed its physical value τ (p)
RR instead of the value τ (s)

RR used in our simulation C3. The key to

doing this is to realize that Eqs. (3.37) and (3.38) describe the coupled mode evolution in the

physical case if we just substitute τ (p)
RR for τ (s)

RR. The mode X is capable of stopping the unstable

growth of the r-mode only when the magnitude of the second term on the right side of Eq. (3.37)

becomes comparable to the first. Through an analysis similar to the one that led to Eq. (3.44), it is

straightforward to find the following condition on the saturation amplitude of the r-mode,

[
PR

τ
(p)
RR

]2
� π2 |csatR |2

γ(p)

∣∣∣∣κ∗XRRεX

∣∣∣∣2 εXεR . (3.46)

We now use the upper limit for |κ∗XRR| from Eq. (3.45) from our numerical evolution, to obtain a
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Figure 3.16: Numerical evolution of the r-mode amplitude α in low-resolution run C3* (solid curve)
and in run C3 (dashed curve).

lower limit for the amplitude csatR , at which the r-mode would be saturated in the physical case:

|csatR | � 20
PR

τ
(p)
RR

√
γ(p)

γ(s)
. (3.47)

Since γ(p) > γ(s), this equation yields |csatR | � 4 × 10−4 for run C3. So if the dominant mode–

mode coupling is of the form given in Eqs. (3.37) and (3.38), our simulation places a relatively large

lower limit on the r-mode saturation amplitude. However, the r-mode could instead be limited

by parametric resonance [21] with a suitable pair of modes (satisfying the resonance condition

ωR + ωY + ωZ � 0). It appears that our simulation does not provide a very strong lower limit on

the saturation amplitude that could be imposed by this kind of process.

3.5.9 Dependence on the grid spacing

We wish to confirm that our standard computational grid can resolve the spatial structure of the

r-mode well enough to give reliable predictions about the saturation amplitude of the mode. For

this purpose, we have performed a simulation (run C3*) with the same parameters of run C3, but

on a grid with only half the spatial resolution (i. e., 32 cells in the radial direction, and 64 cells in

the axial and azimuthal directions). Figure 3.16 compares the evolution of α in runs C3 and C3*.

The two curves are very similar, but in run C3* saturation is reached a bit earlier, at t/P0 = 21.4,

and at a somewhat lower amplitude α = 2.68. This may be caused by the larger numerical viscosity

that must be present in the coarser grid. The evolution of the other diagnostics is also very similar

in the two runs.
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Thus, the simulation run C3* suggests that the qualitative results of our simulations are inde-

pendent of the resolution adopted. The r-mode saturation amplitudes on the two grids agree to

within about 20%. Interestingly, the extrapolation to the infinite resolution case suggests that the

physical saturation amplitude might be even larger than 3.3.

3.6 Testing the saturation amplitude

Even in the absence of a saturation mechanism due to mode–mode coupling as described above, it

is possible that the saturation amplitude in our simulation might still depend on the strength of

the radiation-reaction force. In our simulation we see that the r-mode grows until density waves on

the surface of the star break and form shocks. It is possible that this occurs just because in our

simulation we are pushing the fluid too hard with the radiation-reaction force, much harder than it

would be appropriate in the physical case. To explore how the evolution depends on the strength

of this driving force, we go back to the time in run C3 before any signs of nonlinear saturation are

seen, when α = 1.8. We start a new run (C4) there, increasing the value of κ (which determines the

strength of the radiation-reaction force) to 5967 (1.33 times its value in run C3). The new growth

timescale is about 7.5P0. (Undoubtedly, a test with κ � 4487 would have been more compelling;

but our evolutions are so computationally expensive that we were forced to increase rather than

decrease the strength of the driving force.)

In a separate run (C5), we test the influence of the history of the evolution of the r-mode on

its saturation amplitude. Namely, we ask if an r-mode that started out as the linear initial data of

Eq. (3.23), with a very large amplitude, would evolve much differently from an r-mode that started

out small and was built up gradually to large amplitude by the radiation reaction force. To answer

this question, we start with the Fast equilibrium model, and we add a linear r-mode velocity field

with α0 = 1.8. For this run we keep κ = 4497.

Figures 3.17, 3.18, and 3.19 show the evolution of the diagnostic parameters α, ω and ∆Ω for runs

C3–C5. As expected, the r-mode does grow faster in run C4, but its maximum value is essentially

the same (the maximum α = 3.338 at t = 24.12P0) as in run C3. In this run, the r-mode amplitude

increases from α = 1.8 to α = 3.338 within a time ∆t � 6P0 (compared to ∆t � 8P0 in run C3) as

would be expected given that the driving force is 4
3 times that of run C3.

In run C5, the growth of the r-mode is initially slower than in run C3, as the linear r-mode

velocity field evolves toward its correct nonlinear form. Eventually its maximum occurs at essentially

the same amplitude as before (α = 3.337). Figures 3.17 and 3.18 show that during run C5 α and

ω undergo short-period oscillations; this happens because the initial velocity field is only a small-

amplitude approximation to the real m = 2 r-mode eigenfunction. So other spurious modes with

fairly large amplitude are excited initially in run C5. Note that these extraneous modes must make
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Figure 3.17: Numerical evolution of the r-mode amplitude α in production runs C3–C5.
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Figure 3.18: Numerical evolution of the r-mode frequency ω in production runs C3–C5.
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Figure 3.19: Numerical evolution of the differential rotation ∆Ω in production runs C3–C5.

nonzero contributions to J22 if they are to show up in our diagnostics. Here the extraneous modes

cause a rapid modulation of α and ω with a dominant period of about 0.5P0. Finally, it is interesting

to consider the evolution of ∆Ω (Fig. 3.19), which is very similar in the three runs.

These runs provide limited evidence that the saturation amplitude of the r-mode does not depend

(strongly) on our artificially large radiation reaction force. The nonlinear hydrodynamical process

that leads to shock formation appears to be triggered by attaining a certain critical amplitude of the

r-mode, with little dependence on the strength of the radiation-reaction force. Thus if no mode–

mode coupling occurs on timescales longer than our unphysically short τ (s)
RR, then our results suggest

that the maximum amplitude α ≈ 3 is a reasonable guess for the physical case (κ = 1) as well.

3.7 Free evolution

Stergioulas and Font [7] have also studied the nonlinear evolution of r-mode initial data, but using

relativistic hydrodynamics in a fixed background geometry. In their evolution using this relativistic

Cowling approximation, the gravitational interactions of the mode with itself and with the rest of

the star are neglected. The principal difference between their model and ours therefore is that theirs

has no radiation reaction and no r-mode growth.

Stergioulas and Font find that, for an initial r-mode amplitude α0 = 1.0, no significant sup-

pression of the mode is observed during 13 rotation periods. They define their mode amplitude

using a post-Newtonian expression for the eigenfunction that differs from our Eq. (3.23) except in

the Newtonian limit. And their method of evaluating the mode amplitude numerically also differs

from ours. They read the mode amplitude from the value of the fluid’s velocity at a single point

within the star, while we define α in terms of integrals over the entire star. In the slow-rotation
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Figure 3.20: Numerical evolution of the r-mode amplitude α in production runs C6–C8.

Newtonian limit our two definitions agree. Stergioulas and Font observe that the amplitude of the

velocity oscillations (shown in Fig. 2 of Ref. [7]) decrease by about 50% during the course of their

simulation, an effect that they attribute to numerical viscosity [7]. In order to compare our own

simulations more directly with theirs, we performed a series of evolutions in which we turned off the

radiation-reaction force by setting κ = 0.

In production runs C6 and C7, we augment our rapidly rotating equilibrium configuration with

the approximate r-mode velocity field of Eq. (3.23). For run C6, we choose the initial α0 so that α

[as measured by our numerical diagnostic, Eq. (3.9)] is initially 1.8: the value at which we start to

observe deviations from exponential growth in run C3. For run C7, we choose α0 so that the initial α

is 1.0, in order to make a direct comparison with Stergioulas’ and Font’s published results. We have

evolved these systems through respectively 11 and 7 initial rotation periods (several hydrodynamical

timescales, according to our rough estimate of the speed of sound for the rapidly rotating model).

We plot the evolution of α and ω for these simulations in Figs. 3.20 and 3.21. The wavy ap-

pearance of the curves suggests that, by using the linear eigenfunction, Eq. (3.23), for amplitudes

of order unity, we have excited spurious modes in addition to the basic m = 2 r-mode. We have

already observed this behavior in run C5. The rapid modulation of α and ω has a period of about

0.5P0, and the amplitude of the modulation is smaller for run C7. (This is reasonable: for lower

α we expect the approximate expression, Eq. (3.23), to be more accurate and so to excite smaller

amplitude spurious modes.)

In both runs, α loses about 20% of its initial value during the first four rotation periods. In the

next few rotation periods, however, the average value of α remains unchanged (although in run C6

we can see a further modulation of the amplitude with a period of about 8P0). Throughout the
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Figure 3.21: Numerical evolution of the r-mode frequency ω in production runs C6 and C7.
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Figure 3.22: Numerical evolution of the differential rotation ∆Ω in production runs C6–C8.

runs, the r-mode frequency ω oscillates around ω = −1.12Ω0, consistent with its value in run C3 for

the same value of α (i. e., 1.44). As the run is started, the differential rotation ∆Ω (which is zero

in the initial, rigidly rotating star) increases almost immediately to values that are consistent with

those observed in run C3 for the same amplitude; compare Figs. 3.22 and 3.13. As α decreases, ∆Ω

decreases consistently. (In run C7, ∆Ω settles to a value slightly higher than what we expected from

its value in run C3 when α = 0.82; but we did not run this evolution as far as run C6, so at the end

of our simulation the value of ∆Ω might still be evolving.)

Finally, we study the free nonlinear evolution of an r-mode that was grown to the amplitude

α = 1. To do so, we go back to the time in run C3 when α = 1, and start a new run (C8) using

the C3 data at this time. We evolve these data setting κ to zero in the subsequent evolution. We
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follow this evolution through an additional 15.4 initial rotation periods. During this time the mode

amplitude α is essentially constant, see Fig. 3.20, except for a slow secular decline due to numerical

viscosity at 0.23% per revolution, and a few very small amplitude oscillations. The r-mode frequency

is quite constant, and the phase coherence function, and the differential rotation ∆Ω also remain

quite small in this case (see Fig. 3.22). The r-mode amplitude in run C3 remains above unity for

14.3 rotation periods, so run C8 demonstrates that the LSU hydrodynamic code [10, 9] used here

reliably and stably evolves large amplitude r-modes in rapidly rotating stars for the duration of our

simulations.

Comparing runs C6, C7, and C8, we infer that the strong decrease in the amplitude observed

in runs C6 and C7 occurs as nonlinear hydrodynamics reorganizes the initial linear r-mode velocity

field to the correct nonlinear form for amplitudes of order unity. After the reorganization is complete

(within a few rotation periods), α decreases only because of numerical viscosity. (In run C5, this

same phenomenon caused the slower growth of the amplitude compared to run C3.) By contrast,

the small decrease in run C8 appears to be caused entirely by numerical viscosity.

Altogether, we find that our results are compatible with those of Stergioulas and Font [7]: no non-

linear saturation effect is evident in the free nonlinear evolution of r-modes, at least for amplitudes

of order unity.

3.8 Repeated spindown episodes?

The first attempt to analyze the nonlinear evolution of r-modes by Owen et al. [5] was based on a

simple two-parameter model consisting of a rotating star with angular velocity Ω and its r-mode

with amplitude α. Using this model the mode was found to grow exponentially until it reached some

maximum level αmax, where it was assumed to remain saturated. Energy and angular momentum

were expected to be removed from the star by gravitational radiation during this saturation phase

until the r-mode regained stability (because of increased internal dissipation brought about by

cooling or because the angular momentum of the star was reduced to a very low level). In this initial

picture gravitational radiation was expected to spin down the star on a timescale of about one year.

The radiation emitted was expected to sweep down in frequency from 4
3 times the initial angular

velocity of the star to 4
3 times its final value: ranging from perhaps 1 kHz initially to perhaps 100

Hz.

Our simulations suggest a very different picture. We find that, once the amplitude of the r-

mode reaches αmax, it is quickly reduced by the action of the breaking waves and shocks, instead of

remaining saturated at this value for a very long time. At the end of our simulation the star still

has 60% of its initial angular momentum, and its average angular velocity is 77.5% of Ω0. Thus the

star is left rotating relatively rapidly, leaving open the possibility of subsequent episodes of r-mode
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Figure 3.23: Numerical evolution of the r-mode amplitude α in the extended run C4.

instability and spindown.

To investigate this possibility, we extend run C4, evolving our star for 13 more initial rotation

periods after α has gone back to its initial value (0.1), or (equivalently) for nine periods after α

reaches its minimum (∼ 0.01). The evolution of the amplitude for this case is plotted in Fig. 3.23.

After t = 33P0, the fluid motion is quite turbulent, but we see no sign that α is starting to grow

again. The evolution of the r-mode frequency (Fig. 3.24) is also erratic, probably because here the

sinusoidal approximation begins to fail (remember that ω is approximated as −(1/J22)d|J22|/dt).
In fact, after t = 33P0 we have found it necessary to impose an ad hoc limit on the value of ω;

otherwise, ω grows to about −17Ω0, and the radiation-reaction force (proportional to ω6) becomes

huge, pushing the fluid to superluminal velocities.

Nine periods should be more than enough to see a second r-mode growth episode, if it occurs

at all. Although at the end of the simulation the average angular velocity of the star is lower than

Ω0, the growth timescale is determined by the r-mode frequency, which is even higher than at the

beginning of the run. What keeps the r-mode then from resuming its growth?

One hypothesis is that because of its strong differential rotation the post-spindown configuration

of the star is one which stabilizes the r-mode. The value of ∆Ω for the last few periods is plotted in

Fig. 3.25. The increase of ∆Ω observed between t = 32P0 and t = 36P0 is not caused by radiation

reaction, but by a global, energy-conservative reorganization of the fluid. At the end of this process,

the spatial structure of differential rotation is very different from what it was at αmax: compare

Fig. 3.14 (t = 25.6P0 in run C3) with Fig. 3.26 (t = 42P0 in run C4). The latter plot shows a star

that is rotating on cylinders (except for the outer layer), with Ω(�, z) almost proportional to �.

Karino et al. [22] derived linearized structure equations for the r-modes of differentially rotating

Newtonian stars. When differential rotation is so strong that corotation points appear (that is, when
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Figure 3.24: Numerical evolution of the r-mode frequency ω in the extended run C4.

28 32 36 40
t/P0

0.25

0.30

0.35

0.40

0.45

∆Ω
/Ω_

Figure 3.25: Differential rotation ∆Ω through the extended run C4.



64

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4 0.6 0.8 1 1.2 1.4

z/
R 0

ϖ/R0

Figure 3.26: Meridional structure of differential rotation at the end of production run C4. This con-
tour plot shows level contours for the value of the azimuthally averaged angular velocity Ω(�, z)/Ω̄,
at time t = 42P0.

there exists a � such that ω + mΩ(�) = 0), the mode equations go singular. (The presence of a

corotation point at the cylindrical radius � means that the velocity pattern of the mode appears

to stand still in the frame rotating with angular velocity Ω(�).) A comparison of the differential

rotation of Fig. 3.26 with the value of ω suggests the presence of corotation points in the final

configuration of our star. By itself, however, the singularity of the linearized mode equations does

not necessarily mean that r-modes are impossible.

A second, probably more likely possibility is that, in the very noisy environment manifest in

Figs. 3.23 and Figs. 3.24, the growing r-mode is unable to get locked in phase with the approximate

expression for the driving force that we use here. The actual radiation reaction force [Eq. (3.17)] is

a function of the frequency of the r-mode. Since we do not know exactly what this frequency is, we

use the expression (3.11) to approximate it. This approximation works extremely well as long as the

r-mode makes the dominant contribution to J (1)
22 ; yet, in the turbulent post-spindown environment,

the r-mode no longer dominates the evolution of J22. Hence, our expression for the gravitational

radiation reaction force is no longer correct: it fails to maintain phase coherence with the r-mode

and so prevents the growth of the mode.

If the r-mode really does not exist in the chaotic post-spindown environment, then it will be
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necessary to wait for viscosity to damp differential rotation before the r-mode can grow again.

However, viscosity might be unable to do this before the star cools so much that the r-mode is

stabilized (either because the star forms a crust or because viscosity itself has grown too strong).

This possibility is worrisome, because the same environmental conditions (strong differential rotation

and generalized noise) that characterize the end of run C4 are likely to occur in the young supernova

remnants where r-modes are expected to arise in nature. Still, we think it more likely that the

absence of a second growth episode in our simulation is the result of our expression for the radiation

reaction force, which is too simple for this chaotic situation.

3.9 Conclusions

We have completed a series of numerical 3-D hydrodynamical simulations of the nonlinear evolution

of the GR driven instability in the r-modes of rotating neutron stars. We have verified that the

current-quadrupole GR reaction force implemented in our code is accurate by reproducing the an-

alytical predictions (for slowly rotating stars) with our full 3-D numerical integration code. In our

simulations, the amplitude of the (m = 2) r-mode is driven to a value of about three before nonlinear

hydrodynamic forces stop its growth by the formation of shocks and breaking surface waves. We

showed that the value of this maximum amplitude is insensitive to the strength of the GR driving

force by repeating the simulation for different strengths and different initial fluid configurations. We

also repeated our simulation using a coarser numerical grid to verify the robustness of our results

(the maximum mode amplitude changes only by about 20% when the number of grid points is re-

duced by a factor of 8), and to show in particular that numerical viscosity is not playing a critical

role in our simulations.

In our simulation we have artificially increased the strength of the GR reaction force in order

to reduce the problem to one that can be studied with the available computer resources. We have

shown, however, that the results of our simulation can be used to infer limits on the real physical

problem as well. We used the results of our simulations to derive a lower limit of a few times 10−4 on

the saturation amplitude of the r-mode in a real neutron star due to possible (but unseen) nonlinear

mode–mode couplings. This lower limit applies to couplings with modes that are well described by

our simulation: that is, the modes of a barotropic fluid with spatial structures larger than about 2%

of the radius of the star.

Recent analysis of the effects of magnetic fields [23], and exotic forms of bulk viscosity [4] suggest

that the r-mode instability may not play as important a role in astrophysical situations as was

once thought. However, the considerable uncertainty that exists about both the macroscopic and

microscopic states of a neutron star makes it impossible at the present time to conclude that the

r-mode instability plays no astrophysical role. Thus it seems reasonable to us that some effort be
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put into gravitational wave searches for r-mode signals having forms qualitatively similar to those

predicted by simulations such as this.

3.10 Appendix. Useful expressions in cylindrical coordinates

In this Appendix, we give explicit expressions in cylindrical coordinates (�, z, ϕ) for a number of

useful quantities used in our simulations. The components of the the initial r-mode velocity field

used in our numerical evolutions are

v� = α0

√
5

16π
Ω0

R
z� sin 2ϕ, (3.48)

vz = −α0

√
5

16π
Ω0

R
�2 sin 2ϕ, (3.49)

and

vϕ̂ = Ω0� + α0

√
5

16π
Ω0

R
z� cos 2ϕ. (3.50)

We refer the azimuthal component of the velocity to the orthonormal coordinate ϕ̂, so that vϕ̂ and

vϕ̂ have the same numerical value and we can use them interchangeably.

The integrals that determine J22 and its first time-derivative J (1)
22 are,

J22 =

√
5

16π

∫
ρe−2iϕ[zvϕ̂ + i(zv� −�vz)]�2d�dzdϕ, (3.51)

and

J
(1)
22 =

√
5

16π

∫
ρe−2iϕ[T1 + iT2]�d�dzdϕ, (3.52)

where

T1 ≡ 2zv�vϕ̂ −�vzvϕ̂ − z
∂Φ
∂ϕ

, (3.53)

T2 ≡ z(v2
� − v2

ϕ̂) −�v�vz +�2 ∂Φ
∂z

− z�
∂Φ
∂�

. (3.54)

The components of the radiation-reaction force in cylindrical coordinates are obtained from

Eq. (3.17) by expressing the current multipole tensor Sjk in terms of the current multipole moments

J2m via Eqs. (3.19)–(3.21):

FGR
z = −κ16

45

√
4π
5
G

c7
ρ� (3.55)

×Im
{
e2iϕ
[
3(v� + ivϕ̂)J (5)

22 +�J
(6)
22

]}
,
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and

FGR
ϕ̂ − iFGR

� = κ
16
45

√
4π
5
G

c7
ρ� e2iϕ

[
3vzJ

(5)
22 + zJ

(6)
22

]
, (3.56)

where κ = 1 in general relativity theory. The fifth and sixth time derivatives of J22 are obtained as

J
(5)
22 = ω4J

(1)
22 , and J (6)

22 = −ω6J22.
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Chapter 4

Detection template families for
gravitational waves from the final stages
of binary–black-hole inspirals

We investigate the problem of detecting gravitational waves from binaries of non-

spinning black holes with masses m = 5–20M�, moving on quasi-circular orbits,

which are arguably the most promising sources for first-generation ground-based

detectors. We analyze and compare all the currently available post-Newtonian

approximations for the relativistic two-body dynamics; for these binaries, dif-

ferent approximations predict different waveforms. We then construct examples

of detection template families that embed all the approximate models, and that

could be used to detect the true gravitational-wave signal (but not to characterize

accurately its physical parameters). We estimate that the fitting factor for our

detection families is � 0.95 (corresponding to a loss in event rate � 15%) and we

estimate that the discretization of the template family, for about 104 templates,

increases the loss to � 20%.

In collaboration with A. Buonanno and Y. Chen, to be published. Please refer

to the refereed paper for an extended version of this chapter.

4.1 Introduction

A network of broadband ground-based laser interferometers, aimed at detecting gravitational waves

(GWs) in the frequency band 10–103 Hz, is currently beginning operation and, hopefully, will start

the first science runs within this year (2002). This network consists of the British–German GEO,

the American Laser Interferometer Gravitational-wave Observatory (LIGO), the Japanese TAMA

and the Italian–French VIRGO (which will begin operating in 2004) [1].

The first detection of gravitational waves with LIGO and VIRGO interferometers is likely to



70

come from binary black-hole systems where each black hole has a mass1 of a few M�, and the

total mass is roughly in the range 10–40M� [2], and where the orbit is quasi-circular (it is generally

assumed that gravitational radiation reaction will circularize the orbit by the time the binary is close

to the final coalescence [3]). It is easy to see why. Assuming for simplicity that the GW signal comes

from a quadrupole-governed, Newtonian inspiral that ends at a frequency outside the range of good

interferometer sensitivity, the signal-to-noise ratio ρ is ∝ M5/6/d (see, e.g., Sec. XXX of Ref. [4]),

where M = Mη3/5 is the chirp mass (with M = m1 +m2 the total mass and η = m1m2/M
2), and

d is the distance between the binary and the Earth. Therefore, for a given signal-to-noise detection

threshold (see Sec. 4.2) and for equal-mass binaries (η = 1/4), the larger is the total mass, the larger

is the distance d that we are able to probe. [In Sec. 4.5 we shall see how this result is modified when

we relax the assumption that the signal ends outside the range of good interferometer sensitivity.]

For example, a black-hole–black-hole binary (BBH) of total mass M = 20M� at 100 Mpc gives

(roughly) the same S/N as a neutron-star–neutron-star binary (BNS) of total mass M = 2.8M�

at 20 Mpc. The expected measured-event rate scales as the third power of the probed distance,

although of course it depends also on the system’s coalescence rate per unit volume in the universe.

To give some figures, computed using LIGO-I’s sensitivity specifications, if we assume that BBHs

originate from main-sequence binaries [5], the estimated detection rate per year is � 4 × 10−3–0.6

at 100 Mpc [6, 7], while if globular clusters are considered as incubators of BBHs [8] the estimated

detection rate per year is ∼ 0.04–0.6 at 100 Mpc [6, 7]; by contrast, the BNS detection rate per year

is in the range 3 × 10−4–0.3 at 20 Mpc [6, 7]. The very large cited ranges for the measured-event

rates reflect the uncertainty implicit in using population-synthesis techniques and extrapolations

from the few known galactic BNSs to evaluate the coalescence rates of binary systems. [In a recent

article [9], Miller and Hamilton suggest that four-body effects in globular clusters might enhance

considerably the BBH coalescence rate, brightening the prospects for detection with first-generation

interferometers; the BBHs involved might have relatively high BH masses (∼ 100M�) and eccentric

orbits, and they will not be considered in this chapter.]

The GW signals from standard comparable-mass BBHs with M = 10–40M� contain only few

(50–800) cycles in the LIGO–VIRGO frequency band, so we might expect that the task of modeling

the signals for the purpose of data analysis could be accomplished easily. However, the frequencies

of best interferometer sensitivity correspond to GWs emitted during the final stages of the inspiral,

where the post-Newtonian (PN) expansion [10], which for compact bodies is essentially an expansion

in the characteristic orbital velocity v/c, begins to fail. It follows that these sources require a very

careful analysis. As the two bodies draw closer, and enter the nonlinear, strong-curvature phase,

the motion becomes relativistic, and it becomes harder and harder to extract reliable information
1These are binaries formed either from massive main-sequence progenitor binary stellar systems (field binaries), or

from capture processes in globular clusters or galactic centers (capture binaries).
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from the PN series. For example, using the Keplerian formula v = (πMfGW)1/3 [where fGW is

the GW frequency] and taking fGW = 153 Hz [the LIGO-I peak-sensitivity frequency], we get

v(M) = 0.14(M/M�)1/3; hence, for BNSs v(2.8M�) = 0.2, but for BBHs v(20M�) = 0.38 and

v(40M�) = 0.48.

The final phase of the inspiral (at least when BH spins are negligible) includes the transition

from the adiabatic inspiral to the plunge, beyond which the motion of the bodies is driven (almost)

only by the conservative part of the dynamics. Beyond the plunge, the two BHs merge, forming a

single rotating BH in a very excited state; this BH then eases into its final stationary Kerr state,

as the oscillations of its quasi-normal modes die out. In this phase the gravitational signal will be

a superposition of exponentially damped sinusoids (ringdown waveform). For nonspinning BBHs,

the plunge starts roughly at the innermost stable circular orbit (ISCO) of the BBH. At the ISCO,

the GW frequency [evaluated in the Schwarzschild test-mass limit as f ISCO
GW (M) � 0.022/M ] is

f ISCO
GW (20M�) � 220 Hz and f ISCO

GW (30M�) � 167 Hz. These frequencies are well inside the LIGO

and VIRGO bands.

The data analysis of inspiral, merger (or plunge), and ringdown of compact binaries was first in-

vestigated by Flanagan and Hughes [11], and more recently by Damour, Iyer and Sathyaprakash [12].

Flanagan and Hughes [11] model the inspiral using the standard quadrupole prediction (see, e.g.,

Ref. [4]), and assume an ending frequency of 0.02/M (the point where, they argue, PN and numerical-

relativity predictions start to deviate by ∼ 5% [13]). They then use a crude argument to estimate

upper limits for the total energy radiated in the merger phase (∼ 0.1M) and in the ringdown phase

(∼ 0.03M) of the coalescences of maximally spinning BHs. Damour, Iyer and Sathyaprakash [12]

study the nonadiabatic PN-resummed model of Refs. [14, 15, 16], where the plunge can be seen as

a natural continuation of the inspiral [15] rather than a separate phase; the total radiated energy is

0.07M in the merger and 0.07M in the ringdown [17]. (All these values for the energy should be also

compared with the value, 0.25–0.3M , estimated recently in Ref. [18] for the plunge and ringdown.)

When we deal with nonadiabatic models, we too shall choose not to separate the various phases.

Moreover, because the ringdown phase does not give a significant contribution to the signal-to-noise

ratio for M ≤ 200M� [11, 12], we shall not include it in our investigations.

BHs are expected to have large spins: various studies [19, 20] have shown that when this is the

case, the time evolution of the GW phase and amplitude during the inspiral will be significantly

affected by spin-induced modulations and irregularities. These effects can become dramatic, if the

two BH spins are large and are not aligned or antialigned with the orbital angular momentum.

There is a considerable chance that the analysis of interferometer data, carried out without taking

into account spin effects, could miss the signals from spinning BBHs altogether. We shall tackle the

crucial issue of spin in a separate paper [21].

The purpose of the present chapter is to discuss the problem of the failure of the PN expansion
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during the last stages of inspiral for nonspinning BHs, and the possible ways to deal with this failure.

This problem is known in the literature as the intermediate binary black hole (IBBH) problem [22].

Of course, the best way to solve this problem would be to solve the Einstein equations numerically.

Unfortunately, despite the considerable progress made by the numerical-relativity community in

recent years [13, 23, 24, 25], a reliable estimate of the waveforms emitted by BBHs is still some

time ahead (some results for the plunge and ringdown waveforms were obtained very recently [18],

but they are not very useful for our purposes, because they do not include the last stages of the

inspiral before the plunge, and their initial data are endowed with large amounts of spurious GWs).

To overcome this gap and tackle the delicate issue of the late orbital evolution of BBHs, various

nonperturbative analytical approaches to that evolution (also known as PN resummation methods)

have been proposed [26, 14, 15, 16].

The main features of PN resummation methods can be summarized as follows: (i) they provide

an analytic (gauge-invariant) resummation of the orbital energy function E and gravitational flux

function F (which, as we shall see in Sec. 4.3, are the two crucial ingredients to compute the

gravitational waveforms in the adiabatic limit); (ii) they can describe the motion of the bodies (and

provide the gravitational waveform) beyond the adiabatic approximation; and (iii) in principle they

can be extended to higher PN orders. More importantly, they can provide initial dynamical data for

the two BHs at the beginning of the plunge (such as their positions and momenta), which can be used

(in principle) in numerical relativity to help build the initial gravitational data (the metric and its

time derivative) and then to evolve the full Einstein equations through the merger phase. However,

these resummation methods are based on some assumptions that, although plausible, have not been

proved: for example, when the orbital energy and the gravitational flux functions are derived in the

comparable-mass case, it is assumed that they are smooth deformations of the analogous quantities

in the test-mass limit. Moreover, in the absence of both exact solutions and experimental data, we

can test the robustness and reliability of the resummation methods only by internal convergence

tests.

In this chapter we follow a more conservative point of view. We shall maintain skepticism about

the correctness of waveforms based on resummation as well as all other waveforms ever computed for

the late BBH inspiral and plunge, and we shall develop families of search templates that incorporate

this skepticism. More specifically, we shall be concerned only with detecting BBH GWs, and not

with extracting physical parameters, such as masses and spins, from the measured GWs. The

rationale for this choice is twofold. First, detection is the more urgent problem at a time when

GW interferometers are about to start their science runs; second, a viable detection strategy must

be constrained by the computing power available to process a very long stream of data, while the

study of detected signals to evaluate physical parameters can concentrate many resources on a small

stretch of detector output.
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This is the strategy that we propose: we guess (and hope) that the conjunction of the waveforms

from all the post-Newtonian models computed to date spans a region in signal space that includes (or

almost includes) the true signal. We then choose a detection template bank that approximates very

well all the PN expanded and resummed models (henceforth denoted as target models). If our guess is

correct, the effectualness [26] of the detection model in approximating the targets (i.e., its capability

of reproducing their signal shapes) should be indicative of its effectualness in approximating the true

signals. Because our goal is the detection of BBH GWs, we shall not require the detection template

bank to be faithful [26] (i.e., to have a small bias in the estimation of the masses).

This chapter is organized as follows. In Sec. 4.2, we briefly review the theory of matched-filtering

GW detections, which underlies the searches for GWs from inspiraling binaries. Then in Secs. 4.3,

4.4, and 4.5 we present the target models and give a detailed analysis of the differences between

them, both from the point of view of the orbital dynamics and of the gravitational waveforms.

More specifically, in Sec. 4.3 we introduce the two-body adiabatic models, both PN expanded and

resummed; in Sec. 4.4 we introduce nonadiabatic approximations to the two-body dynamics; and in

Sec. 4.5 we discuss the main differences between the various models. Our proposals for the detection

template bank are discussed in Sec. 4.6, where we also build the Owen metric [27] for the template

banks and use it to evaluate the number of templates needed for detection. Section 4.7 summarizes

our conclusions.

Throughout this chapter we adopt the LIGO noise curve given in Fig. 4.1 and Eq. (4.44), and

used also in Ref. [12]. Because the noise curve anticipated for VIRGO [see Fig. 4.1] is quite different

(both at low frequencies, and in the location of its peak-sensitivity frequency) our results cannot be

applied naively to VIRGO. We plan to repeat our study for VIRGO in the near future.

4.2 The theory of matched-filtering signal detection

The technique of matched-filtering detection for GW signals is based on the systematic comparison of

the measured detector output s with a bank of theoretical signal templates {ui} that represent a good

approximation to the class of physical signals that we seek to measure. This theory was developed by

many authors over the years, who have published excellent expositions [28, 27, 11, 29, 53]. However,

given that the results relevant to our purposes are somewhat scattered throughout the literature, in

the following pages we give a comprehensive pedagogical introduction to the theory.

4.2.1 The statistical theory of signal detection

This section is based on Finn and Chernoff’s revision [28, 30] of the classical theory of signal de-

tection [31] (see also [29, 32, 33]). The detector output s consists of noise n and possibly of a true

gravitational signal hi (part of a family {hi} of signals generated by different sources for different
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source parameters, detector orientations, and so on). Although we may be able to characterize the

properties of the noise in several ways, each separate realization of the noise is unpredictable, and

it might in principle fool us by hiding a physical signal (hence the risk of a false dismissal) or by

simulating one (false alarm). Thus, the problem of signal detection is essentially probabilistic: we

seek to evaluate the conditional probability P (h|s) that s actually contains one of the hi. Using

Bayes’ theorem, we can write

P (h|s) =
P (s|h)P (h)

P (s)
=

P (h)
∑
i p(hi)P (s|hi)

P (h)
∑

i p(hi)P (s|hi) + P (0)P (s|0)
, (4.1)

where P (h) and P (0) are the a priori probabilities that a signal belonging to the family {hi} is

present or absent; P (s) is the a priori probability of observing the data stream s, which can be

broken up into the conditional probabilities P (s|hi) and P (s|0) of observing s given the presence or

absence of hi; finally, p(hi) specifies the a priori probability density of the signals within the family

{hi}.
While the determination of the a priori probabilities P (0), P (h) and p(hi) can be a delicate task,

a precise characterization of the noise is necessary to evaluate P (s|hi)/P (s|0), that is, the ratio of

the probabilities that either one of the hi or noise alone could have produced the detector output

s. P (h|s) can be rewritten as

P (h|s) =
Λ

Λ + P (0)/P (h)
, (4.2)

where

Λ =
∑
i

p(hi)Λ(hi) =
∑
i

p(hi)
P (s|hi)
P (s|0)

. (4.3)

The mathematical steps involved in the computation of Λ are easily laid down for a generic

model of noise, but it is only in the much simplified case of normal noise that it is possible to obtain

manageable formulas; and while noise will definitely not be normal in a real detector, the Gaussian

formulas can still provide useful guidelines for the detection problems. Eventually, the statistical

analysis of detector search runs will be carried out with numerical Montecarlo techniques that make

use of the measured characteristics of the noise.

We shall then compute P (s|0) in the case of normal noise, and then proceed to obtain P (s|hi)
as P (s− hi|0). The probability of obtaining s as a realization of a random process with correlation

function Cn(τ) = n(0)n(τ) is given by

P (s|0) =
1
P exp
[
−1

2

∫ ∫
C−1
n (t1, t2)s(t1)s(t2)dt1dt2

]
, (4.4)
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where P is a function of the noise parameters, but not of s, and where C−1
n is defined by

∫
Cn(t1, τ)C−1

n (τ, t2)dτ = δ(t1 − t2). (4.5)

The Fourier transform2 of C−1
n (t1, t2) with respect to t1 is just

C̃−1
n (f, t2) =

2 e2πift2

Sn(f)
, (4.6)

where Sn(f), the one-sided spectral power density, is defined by

ñ∗(f1)ñ(f2) =
1
2
δ(f1 − f2)Sn(f1) for f1 > 0, (4.7)

and Sn(f1) = 0 for f1 < 0. The spectral power density is related to Cn by the Wiener–Khintchine

theorem (see, e.g., [57]),

Sn(f) = 2
∫ +∞

−∞
Cn(τ)e2πifτdτ. (4.8)

Using Parseval’s theorem we get

P (s|0) =
1
P exp
[
−
∫ ∫

s̃∗(f)s(t2)
Sn(|f |) e2πift2dfdt2

]
=

1
P exp
[
−
∫
s̃∗(f)s̃(f)
Sn(|f |) df

]
. (4.9)

For real signals g, h, we follow Cutler and Flanagan [34] in defining the symmetric inner product

〈g, h〉 = 2
∫ +∞

−∞

g̃∗(f)h̃(f)
Sn(|f |) df = 4 Re

∫ +∞

0

g̃∗(f)h̃(f)
Sn(f)

df, (4.10)

so finally

P (s|hi)
P (s|0)

=
P (s− hi|0)
P (s|0)

=
exp
[− 1

2 〈s− hi, s− hi〉
]

exp
[− 1

2 〈s, s〉
] = exp

[
〈s, hi〉 − 1

2
〈hi, hi〉

]
. (4.11)

It turns out that it is inconvenient, in practice, to evaluate the probability P (h|s) directly,

because the a priori probabilities P (h) and P (0) are in general poorly known. What we can do,

instead, is to recognize that the ratio Λ(hi) and any other monotonic function of the inner product

〈s, hi〉 are statistics that (for different realizations of the noise) will be distributed around low values

if the physical signal hi is absent, and around high value if the signal is present. Thus, we shall

establish a decision rule as follows [31]: we will claim a detection if the value of a statistic (for a

given instance of s and for a specific hi) is higher than a predefined threshold. We can then study

the probability distribution of the statistic to estimate the probability of false alarm (the probability

that the statistic is higher than the threshold even if the physical signal is absent) and of false

2In our convention, we define the Fourier transform of a signal h(t) as F [h(t)] = h̃(f) =
�

h(t)e−i2πftdt; the inverse

transform is then given by F−1[h̃(f)] = h(f) =
�

h(f)ei2πftdf .
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dismissal (the probability that the statistic is lower than the threshold even if the physical signal is

present).

The statistic that is generally used is the signal-to-noise ratio ρ (for the measured signal s after

filtering by hi), defined as

ρ(hi) =
〈s, hi〉

rms 〈n, hi〉 =
〈s, hi〉√〈hi, hi〉

, (4.12)

where the equality follows because

rms 〈n, hi〉 =
[
〈hi, n〉〈n, hi〉

]1/2
=

[∫ +∞

−∞

∫ +∞

−∞

h̃(f1)h̃∗(f2)ñ∗(f1)ñ(f2)
Sn(f1)Sn(f2)

df1df2

]1/2
=
√
〈hi, hi〉,

(4.13)

where we have used the definition of Sn(f), Eq. (4.7). In the case when s = n, it is easy to prove that

ρ is a normal variable with a mean of zero and a variance of one (because rms 〈s, hi〉 = rms 〈n, hi〉 =√〈hi, hi〉). If instead s = hi+n, then ρ is a normal variable with mean
√〈hi, hi〉 (because 〈s, hi〉 =

〈hi + n, hi〉 = 〈hi, hi〉) and unit variance (because (〈s, hi〉 − 〈hi, hi〉)2 = 〈n, hi〉2 = 〈hi, hi〉). The

threshold ρ∗ for detection is set as a tradeoff between the resulting false-alarm probability,

F =

√
1
2π

∫ +∞

ρ∗
e−ρ

2/2dρ =
1
2
erfc (ρ∗/

√
2) (4.14)

(where erfc is the complementary error function [35]), and the probability of correct detection

D =
1
2
erfc [(ρ∗ −

√
〈hi, hi〉)/

√
2] (4.15)

(the probability of false dismissal is just 1 −D).

4.2.2 Template families and extrinsic parameters

We can now go back to the initial strategy of comparing the measured signal against a bank of Ni

templates {ui} that represent a plurality of sources of different types and physical parameters. For

each stretch s of detector output, we shall compute the signal-to-noise ratio 〈s, ui〉/
√〈ui, ui〉 for

all the ui, and then apply our rule to decide whether the physical signal corresponding to any one

of the ui is actually present within s [4]. Of course, the threshold ρ∗ needs to be adjusted so that

the probability Ftot of false alarm over all the templates is still acceptable. Under the assumption

that all the inner products 〈n, ui〉 of the templates with noise alone are statistically independent

variables [given Eq. (4.13), this hypothesis entails 〈ui, uj〉 � 0], Ftot is just 1 − (1 − F)Ni ∼ NiF .

If the templates are not statistically independent, this number is an upper limit on the false alarm

rate. Before evaluating the dependence of ρ∗ on Ftot, we first want to note that, for any template

ui, there are a few obvious ways (parametrized by the so-called extrinsic parameters) of changing
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the signal shape that do not warrant the inclusion of the modified signals as separate templates3.

The simplest such parameter is just the signal amplitude. It is expedient to normalize the

templates ui so that 〈ui, ui〉 = 1, and ρ(ui) = 〈s, ui〉. Indeed, throughout the rest of this chapter we

shall always assume normalized templates. If s contains a scaled version hi = Aui of a template ui

(here A is known as the signal strength), then ρ(ui) = A. However, the statistical distribution of ρ

is the same in the absence of the signal. Then the problem of detection signals of known shape and

unknown amplitude is easily solved by using a single normalized template and the same threshold

ρ∗ as used for the detection of completely known signals [31]. Quite simply, the stronger an actual

signal, the easier it will be to reach the threshold4.

The other extrinsic parameters are the signal phase and time of arrival. Any true signal h can

be written in all generality as

h(t) = Ahah[t− th] cos[Φh(t− th) + φh], (4.16)

where ah(t) = 0 for t < 0, where Φh(0) = 0, and where ah(t) is normalized so that 〈h, h〉 = A2
h.

While the template bank {ui} must contain signal shapes that represent all the physically possible

functional forms a(t) and Φ(t), it is possible to modify our search strategy so that the variability in

φh and th is automatically taken into account without creating additional templates.

Let us look at phase first, and try to match h with a continuous one-parameter subfamily of

templates u(φt; t) = ah(t) cos[Φh(t)+φt]. The correct phase φt = φh can be obtained by maximizing

〈h, u(φt)〉 over all the φt. For any φt, the template u(φt) can also be written

u(φh; t) = cos(φt)u(0; t) + sin(φt)u(π/2; t); (4.17)

then the maximum

max
φt

〈h, u(φt)〉 =
√
|〈h, u(0)〉|2 + |〈h, u(π/2)〉|2 = 〈h, u(φh)〉 (4.18)

is found for φt = arctan 〈h, u(π2 )〉/〈h, u(0)〉 = φh. It follows that for each time signal shape

{a(t),Φ(t)}, we need to keep in our template bank only two copies of the corresponding ui, for

φt = 0 and φt = π/2. The signal-to-noise ratio of the detector output s against ui, for the best

possible value of φt, is automatically found as [31]

ρφ = max
φt

〈s, ui(φt)〉 =
√
|〈s, ui(0)〉|2 + |〈s, ui(π/2)〉|2 , (4.19)

3Owen [27] was the first to speak about intrinsic and extrinsic parameters, although the distinction had been
present implicitly in the theory of signal detection for a long time.

4Notice however that the probability of false dismissal 1 − D does depend on the statistical distribution of A. In
the case of normal distribution (A = 0, A2 = A2

rms), then D = erfc[ρ∗/
�

2(1 + A2
rms)] [31].
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where we orthonormalized the two bases (so that 〈ui(0), ui(π/2)〉 = 0 and 〈ui(0), ui(0)〉 = 1,

〈ui(π/2), ui(π/2)〉 = 1); then the statistical distribution of this phase-maximized statistic (always

under the assumption of normal noise) is a slight modification from the simpler case of completely

known signal shape: for the case of noise alone5, ρφ follows the Raleigh distribution [31]

p0(ρφ) = ρφe
−ρ2φ/2, (4.20)

and the false-alarm probability for a threshold ρφ∗ is just

F = e−ρ
2
φ∗/2. (4.21)

Throughout this chapter, we will find it useful to consider inner products that are maximized

(or minimized) with respect to the phases of both templates and reference signals. In particular,

we shall follow Damour, Iyer and Sathyaprakash in making a distinction between the best match or

maxmax match

maxmax〈h, ui〉 = max
φh

max
φt

〈h(φh), ui(φt)〉, (4.22)

which represents the most favorable combination of phases between the signals h and ui, and the

minmax match

minmax〈h, ui〉 = min
φh

max
φt

〈h(φh), ui(φt)〉, (4.23)

which represents the safest estimate in the realistic situation, where we cannot choose the phase of

the physical measured signal, but only of the template used to match the signal. Damour, Iyer and

Sathyaprakash [see Appendix B of Ref. [26]] show that both quantities are easily computed as

 maxmax

minmax

 =

A+B

2
±
[(

A+B

2

)2

+ C2

]1/2
1/2

, (4.24)

where

A = 〈h(0), ui(0)〉2 + 〈h(0), ui(π/2)〉2, B = 〈h(π/2), ui(0)〉2 + 〈h(π/2), ui(π/2)〉2, (4.25)

C = 〈h(0), ui(0)〉〈h(π/2), ui(0)〉 + 〈h(0), ui(π/2)〉〈h(π/2), ui(π/2)〉. (4.26)

Notice that in these formulas we have assumed that the two bases {h(0), h(π/2)} and {ui(0), ui(π/2)}
have been orthonormalized.

We now move on to the time of arrival. To see why th is an extrinsic parameter, we point out
5In presence of the signal, ρφ is distributed according to the more complicated Rice distribution [31].
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that in the time domain the inner product 〈h, u〉 expresses a cross-correlation product between the

two signals and a noise kernel: in the simplified case of white noise (where Sn(f) = Sw and the

kernel is also constant), we have

〈h, u〉 =
2
Sw

∫ +∞

−∞
h̃∗(f)ũ(f)df =

2
Sw

∫ +∞

−∞
h(t)u(t)dt. (4.27)

The correlation between h(t) and a time-shifted version u(t− t0) of u(t) is just

C[h(t), u(t− t0)] =
∫ +∞

−∞
h(t)u(t− t0)dt =

∫ +∞

−∞
h̃∗(f)ũ(f)ei2πft0df, (4.28)

where we used a well-known property of the Fourier transform of time-shifted signals. The cross-

correlation will be maximum when t0 is such that the two signals are synchronized as best as possible.

In particular, for the h(t) given by Eq. (4.16), if u(t) = ah(t) cos[Φh(t)+φh], then C will be maximum

for t0 = th.

Going back to the general case, the correct signal to noise for the normalized, time-shifted

template u(t− t0) against the signal s is just

〈s, u(t0)〉 = 4 Re
∫ +∞

0

s̃∗(f)ũ(f)
Sn(f)

ei2πft0df. (4.29)

These integrals can be computed at the same time for all the time of arrivals {t0}, using a fast Fourier

transform technique that requires ∼ Ns logNs operations (where Ns is the number of the samples

that describe the signals) as opposed to ∼ N2
s required to compute all the integrals separately [36].

We now go back to adjusting the threshold ρ∗ for a search over a vast template bank, using the

estimate (4.21) for the false-alarm probability. Assuming that the statistics ρφ for each signal shape

and starting time are independent, we require that

e−ρ
2
φ∗/2 � Ftot

NtimesNshapes
, (4.30)

or

ρ∗ �
√

2(logNtimes + logNshapes − logFtot). (4.31)

It turns out that for 1015 starting times (equivalent to templates displaced by 3 ms, over one

year [37]), and for a number of shapes up to a few billions, a threshold of order ten will yield

false-alarm probabilities � 10−9. If two detectors are used in coincidence, ρ∗ is reduced to ∼ 6 [37].
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4.2.3 Imperfect detection and discrete families of templates

There are two distinct reasons why the detection of a physical signal h by matched filtering with

a template bank {ui} might result in signal-to-noise ratios lower than the optimal signal-to-noise

ratio,

ρopt =
√
〈h, h〉. (4.32)

First, the templates, understood as a continuous family of functional shapes indexed by one or more

intrinsic parameters λA (such as the masses, spins, etc.), might give an unfaithful representation

of h, introducing errors in the representation of the phasing or the amplitude. The loss of signal-

to-noise ratio due to unfaithful templates is quantified by the fitting factor FF (defined below, and

introduced by Apostolatos [38]). The second reason why the signal-to-noise ratio will be degraded

with respect to its optimal value is that, even if our templates are perfect representations of the

physical signals, in practice we will not adopt a continuous family of templates, but we will be

limited to using a discrete bank {ui ≡ u(λAi )}. This loss of signal-to-noise ratio depends on how

finely templates are laid down over parameter space [39]; a notion of metric in template space (the

Owen metric [27, 40]) can be used to guide the disposition of templates so that the loss (in the

perfect-template abstraction) is limited to a fixed, predetermined value (the minimum match MM,

defined below and introduced by Owen[27]).

The fitting factor FF [38] characterizes the loss in signal-to-noise ratio due to the projection of

the signal h onto the continuous template family {u(λA)}:

FF(h, u(λA)) =
maxλA 〈h, u(λA)〉√〈h, h〉 . (4.33)

In general, we will be interested in the FF of the continuous template bank in representing a

family of physical signals {h(θA)}, dependent upon one or more physical parameters θA: so we shall

write FF(θA) = FF(h(θA), u(λA)). Notice, first, that although it is convenient to index the template

family by the same physical parameters θA that characterize h(θA), this is by no means necessary.

The template parameters λA might be a different number than the physical parameters (indeed,

this is desirable when the θA get to be very many), and they might not carry any direct physical

meaning. Second, notice that the value of the FF will depend on the parameter range chosen to

maximize the λA.

The minimum match MM [27] characterizes the loss of signal-to-noise ratio due to the projection

of a continuous family of templates {u(λA)} onto a discretized version {u(λAi )} of itself:

MM = min
λ̂A

max
λAi

〈u(λ̂A), u(λAi )〉 = min
λ̂A

max
∆λAi

〈u(λ̂A), u(λ̂A + ∆λAi )〉, (4.34)
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where ∆λAi ≡ λAi − λ̂A. Within the continuous family, the inner product 〈u(λ̂A), u(λ̂A + ∆λA)〉 (or

match) can be expanded about its maximum of 1 at ∆λA = 0:

〈u(λ̂A), u(λ̂A + ∆λA)〉 = M(λ̂A, λ̂A + ∆λA) = 1 +
1
2

∂2M

∂∆λA∂∆λB

∣∣∣∣
λ̂C

∆λB∆λC + · · · , (4.35)

so the mismatch 1 − M between u(λ̂A) and the nearby template u(λ̂A + ∆λA) can be seen as the

square of the proper distance in a differential manifold indexed by the coordinates λA [27],

1 −M(λ̂A, λ̂A + ∆λA) = gBC∆λB∆λC , (4.36)

where

gBC = −1
2

∂2M

∂∆λA∂∆λB

∣∣∣∣
λ̂C
. (4.37)

This is the Owen metric for the template space {u(λA)}.
If, for simplicity, we lay down the n-dimensional discrete template bank {u(λAi )} along a hyper-

cubical grid of cellsize dl in the metric gAB (a grid in which all the templates on nearby corners

have a mismatch of dl with each other), the minimum match occurs when λ̂A lies exactly at the

center of one of the hypercubes: then 1 − MM = n(dl/2)2. Conversely, given MM, the volume of

the corresponding hypercubes is given by VMM = (2
√

(1 − MM)/n)n. The number of templates

required to achieve a certain MM is obtained by integrating the proper volume of parameter space

within the region of physical interest, and then dividing by VMM:

N [g,MM] =
∫ √|g|dλA(

2
√

[1 − MM]/n
)n . (4.38)

In practice, if the metric is not constant over parameter space it will not be possible to lay down the

templates on an exact hypercubical grid of cellsize dl, so N will be somewhat higher than predicted

by Eq. (4.38). However, we estimate that this number should be correct within a factor of two,

which is adequate for our purposes.

In the worst possible case, the combined effect of unfaithful modeling (FF < 1) and discrete

template family (MM < 1) will degrade the optimal signal-to-noise ratio by a factor of about

FF + MM− 1: in other words, the two separate losses 1−FF and 1−MM must be summed. Notice

however that while we were able to choose MM, FF is a function of the point θA, so if an estimate

of FF(θA) is available it makes sense to modulate MM over parameter space to achieve a constant

total loss MMT = FF + MM − 1; then the number of templates becomes

NT[g,MM] =
∫ √|g|dλ̂A(

2
√

[FF(λ̂A) − MMT]/n
)n ; (4.39)
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here FF(λ̂A) is understood as FF(θ̂A(λ̂A)), where θ̂A(λ̂A) gives the inverse projection map from

each λ̂A to the θ̂A for which u(λ̂A) is the best match for h(θ̂A). Clearly, NT → ∞ as MMT → FF,

because a continuous family of templates is needed to achieve a total loss equal to the fitting factor.

The estimate FF+MM−1 for the total signal-to-noise loss is exact when, in the space of signals,

the two segments that join h(θ̂A) to its projection u(λ̂A) and u(λ̂A) to the nearest discrete template

u(λ̂Ai ) can be considered orthogonal:

〈h(θA) − u(λ̂A), u(λ̂A) − u(λ̂Ai )〉 � 0. (4.40)

Although this assumption is generally very accurate if FF and MM are small enough, it is possible

to be more careful, and define an external metric gE
AB [41] that characterizes the mismatch between

h(θ̂A) and a template u(λ̂A + ∆λA) that is displaced with respect to the projection of h(θ̂A):

〈h(θ̂A), u(λ̂A + ∆λA)〉 = FF(θ̂A) − gE
BC∆λB∆λC + · · · , (4.41)

where

gE
BC = −1

2
∂2〈h(θ̂A), u(λ̂A + ∆λA)〉

∂∆λA∂∆λB

∣∣∣∣∣
λ̂C=0

. (4.42)

Then the number of templates needed to achieve a given MMT is given by Eq. (4.39) with the metric

gBC replaced by gE
BC .

Since the strength of gravity-wave signals scales as the inverse of the distance6, the matched-

filtering scheme, with a chosen signal-to-noise threshold ρ∗, will allow the reliable detection of a

signal h, characterized by the signal strength Ad0 =
√〈h, h〉 at the distance d0, out to a maximum

distance
dmax

d0
=

Ad0

ρ∗
. (4.43)

If we assume that the measured GW events happen with a homogeneous event rate throughout

the accessible portion of the universe, then the detection rate will scale as d3
max. It follows that

the use of unfaithful, discrete templates {ui} to detect the signal h will effectively reduce the signal

strength, and therefore dmax, by a factor FF+MM−1. This loss in the signal-to-noise ratio can also

be seen as an increase in the detection threshold ρ∗ necessary to achieve the required false-alarm rate,

because the imperfect templates introduce an element of uncertainty. In either case, the detection

rate will be reduced by a factor (FF + MM − 1)3.

6The amplitude of the measured gravity-wave signals depends not only on the actual distance to the source, but
also on the reciprocal orientation between the detector and the direction of propagation of the waves. A combination
of several detectors will be needed, in general, to evaluate the distance to a gravity-wave source starting from the
signal-to-noise ratio alone.
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Figure 4.1: Square root of the noise spectral density
√
Sn(f) versus frequency f , for LIGO-I

[Eq. (4.44)], and VIRGO.

4.2.4 Approximations for detector noise spectrum and gravitational-wave

signal

For LIGO-I we use the analytic fit to the noise power spectral density given in Ref. [12], and plotted

in Fig. 4.44:

Sn(f)
Hz−1 = 9.00 × 10−46

[(
4.49

f

f0

)−56

+ 0.16
(
f

f0

)−4.52

+ 0.52 + 0.32
(
f

f0

)2
]
, (4.44)

where f0 = 150 Hz. The first term in the square brackets represents seismic noise, the second and

third, thermal noise, and the fourth, photon shot noise.

Throughout this chapter, we shall compute BBH waveforms in the quadrupole approximation

(we shall compute the phase evolution of the GWs with the highest possible accuracy, but we shall

omit all harmonics higher than the quadrupole, and we shall omit post-Newtonian corrections to

the amplitude; this is a standard approach in the field, see, e.g., [10]). The signal received at the

interferometer can then be written as [4, 30]

h(t) =
Θ
dL
Mη(πMfGW)2/3 cosϕGW, (4.45)

where f and ϕGW are the instantaneous GW frequency and phase at the time t, dL is the luminosity

distance, M and η are respectively the BBH total mass m1 +m2 and the dimensionless mass ratio

m1m2/M
2, and where we have taken G = c = 1. The coefficient Θ depends on the inclination of the

BBH orbit with respect to the plane of the sky, and on the polarization and direction of propagation

of the GWs with respect to the orientation of the interferometer. Finn and Chernoff [30] examine
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the distribution of Θ, and show that Θmax = 4, while rmsΘ = 8/5. We shall use this last value

when we compute optimal signal-to-noise ratios. The waveform given by Eq. (4.45), after dropping

the factor ΘMη/dL, is known as restricted waveform.

4.3 Adiabatic models

We turn, now, to a discussion of the currently available mathematical models for the inspiral of

BBHs. We begin in this section with adiabatic models. BBH adiabatic models treat the orbital

inspiral as a quasi-stationary sequence of circular orbits, indexed by the invariantly defined velocity

v = (Mϕ̇)1/3 = (πMfGW)1/3. (4.46)

The evolution of the inspiral (and in particular of the orbital phase ϕ) is completely determined by

the energy-balance equation
dE(v)
dt

= −F(v), (4.47)

This equation relates the time derivative of the energy function E(v) (which is related to the total

relativistic energy Etot by Etot = (m1 +m2)(1 + E), and which is conserved in absence of radiation

reaction) to the gravitational-flux (or luminosity) function F(v). Both functions are known for

quasi-circular orbits as a PN expansion in v. It is easily shown that Eq. (4.47) is equivalent to the

system (see, e.g., Ref. [26])

dϕGW

dt
=

2v3

M
,

dv

dt
= − F(v)

M dE(v)/dv
. (4.48)

In accord with the discussion around Eq. (4.45), we shall only consider the restricted waveform

h(t) = v2 cosϕGW(t), where the GW phase ϕGW is twice the orbital phase ϕ.

4.3.1 Adiabatic PN expanded models

The equations of motion for two compact bodies at 2.5PN order were first derived in Refs. [42].

The 3PN equations of motion have been obtained by two separate groups of researchers: Damour,

Jaranowski and Schäfer [43] used the Arnowitt–Deser–Misner (ADM) canonical approach, while

Blanchet, Faye and de Andrade [44] worked with the PN iteration of the Einstein equations in the

harmonic gauge. Recently Damour and colleagues [45], working in the ADM formalism and applying

dimensional regularization, determined uniquely the static parameter that enters the 3PN equations

of motion [43, 44] and that was until then unknown. Thus at present the energy function E is known

up to 3PN order.

The gravitational flux emitted by compact binaries was first computed at 1PN order in Ref. [46].
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Figure 4.2: In the left panel, we plot the normalized flux function FTN /FNewt versus v, at different
PN orders for equal-mass binaries, η = 0.25. In the right panel, we plot the effect of the unknown
parameter θ̂ on the normalized flux function FTN/FNewt at 3PN and 3.5PN orders. Note that the
1.5PN and 2PN flux, and the 3PN and 3.5PN flux, are so close that they cannot be distinguished in
these plots. The two long-dashed vertical lines correspond to v � 0.18 and v � 0.53; they show the
velocity range that corresponds to the LIGO frequency band 40 ≤ fGW ≤ 240 Hz for BBHs with
total mass in the range 10–40M�.

It was subsequently determined at 2PN order with a formalism based on multipolar and post–

Minkowskian approximations, and, independently, with the direct integration of the relaxed Einstein

equations [47]. Nonlinear effects of tails at 2.5PN and 3.5PN orders were computed in Refs. [48].

More recently, Blanchet and colleagues derived the gravitational-flux function for quasi-circular

orbits up to 3.5PN order [49, 50]. However, at 3PN order [49, 50] the gravitational-flux function

depends on an arbitrary parameter (in our notation, θ̂) that could not be fixed in the regularization

scheme used by these authors.

PN energy and flux

Denoting by ETN and FTN the N th-order Taylor approximant (T-approximant) to the energy and

the flux functions, we have

ET2N (v) ≡ ENewt(v)
N∑
k=0

Ek(η) v2k , (4.49)

FTN (v) ≡ FNewt(v)
N∑
k=0

Fk(η) vk , (4.50)

where “Newt” stands for Newtonian order, and the subscripts 2N andN stand for post2N–Newtonian

and postN–Newtonian order. The quantities in these equations are

ENewt(v) = −1
2
η v2 , FNewt(v) =

32
5
η2 v10 , (4.51)
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Figure 4.3: In the left panel, we plot the energy function ETN versus v, at different PN orders for
η = 0.25. In the right panel, we plot the percentage difference δETN = 100 |(ETN+1 − ETN )/ETN |
versus the total mass M , for N = 1, 2, at the LIGO-I peak-sensitivity GW frequency. The two
long-dashed vertical lines in the left figure correspond to v � 0.18 and v � 0.53; they show the
velocity range that corresponds to the LIGO frequency band 40 ≤ fGW ≤ 240 Hz for BBHs with
total mass in the range 10–40M�.
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F6(η) =
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F7(η) =
(
−16285

504
+

176419
1512

η +
19897
378

η2

)
π . (4.57)

Here θ̂ is the arbitrary 3PN flux parameter [49, 50]. From Table I of Ref. [50] we read that the extra

number of GW cycles accumulated by the PN terms of a given order decreases (roughly) by an order

of magnitude when we increase the PN order by one. Hence, we find it reasonable to expect that at

3PN order the parameter θ̂ should be of order unity, and we choose as typical values θ̂ = 0,±2.
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M f1PN
GW (Hz) f2PN

GW (Hz) f3PN
GW (Hz)

(5 + 5)M� 3376 886 832
(10 + 10)M� 1688 442 416
(15 + 15)M� 1125 295 277
(20 + 20)M� 844 221 208

Table 4.1: Location of the maximum binding Energy for Circular Orbits (MECO), computed using
the T-approximants ETN to the energy function.

N (5 + 20)M� (10 + 10)M� (15 + 15)M�

〈TN , TN+1〉 〈TN , TN+1〉 〈TN , TN+1〉
0 0.437 0.557 0.620
1 0.554 0.587 0.632

2 (θ̂ = +2) 0.479 0.548 0.551
2 (θ̂ = −2) 0.457 0.504 0.510

Table 4.2: Test for the Cauchy convergence of the T-approximants. The values quoted are maxmax
matches obtained by maximizing with respect to the extrinsic parameters, but not to the intrinsic
parameters (i.e., the matches are computed for T waveforms with the same masses, but different PN
orders).

In Fig. 4.2 we plot the flux as a function of v at various PN orders for the equal mass case

η = 0.25. To convert v to a GW frequency we can use

fGW � 3.2 × 103

(
20M�
M

)
v3 . (4.58)

The two long-dashed vertical lines in Fig. 4.2 correspond to v � 0.18 and v � 0.53; they show

the velocity range that corresponds to the LIGO frequency band 40 ≤ fGW ≤ 240 Hz for BBHs

with total mass in the range 10–40M�. At the LIGO-I peak-sensitivity frequency, which is 153 Hz

according to our noise curve, and for a (10+10)M� BBH, we have v � 0.362; and the percentage

difference between subsequent PN orders is 1.5PN → 2PN : −0.2%; 2PN → 2.5PN : −34%;

2.5PN → 3PN(θ̂ = 0) : +43%; 3PN → 3.5PN(θ̂ = 0) : +0.04%. The percentage difference between

the 3PN fluxes with θ̂ = ±2 is ∼ 7%. It is interesting to notice that while there is a big difference

between the 1PN and 1.5PN orders, and between the 2PN and 2.5PN orders, the 3PN and 3.5PN

fluxes are rather close. Of course this observation is insufficient to conclude that the PN sequence

is converging at 3.5PN order.

In the left panel of Fig. 4.3, we plot the T-approximants for the energy function versus v, at

different PN orders, while in the right panel we plot the percentage difference of the energy function

between successive PN orders. We note that the 1PN and 2PN energies are distant, but the 2PN

and 3PN energies are quite close.
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Definition of the models

The evolution equations (4.48) for the adiabatic inspiral lose validity (the inspiral ceases to be

adiabatic) a little before v reaches vTNMECO, where MECO stands for Maximum binding Energy

Circular Orbit [51]. This vTNMECO is computed as the value of v at which dETN (v)/dv = 0. In building

our adiabatic models we evolve Eqs. (4.48) right up to vMECO and stop there. We call this the

ending frequency for these waveforms, and in Table 4.1 we show this frequency for some BH masses.

However, for certain binaries, the 1PN and 2.5PN flux functions can go to zero before v = vTNMECO

[see the left panel of Fig. 4.2]. In those cases we choose for the ending frequency the value of

f = v3/(πM) where F(v) = 0.

We shall refer to the models discussed in this section as T(nPN,mPN), where nPN (mPN)

denotes the maximum PN order of the terms included for the energy (the flux). We shall consider

(nPN,mPN) = (1, 1.5), (2, 2.5) and (3, 3.5, θ̂) [at 3PN order we need to indicate also a choice of the

arbitrary flux parameter θ̂].

Waveforms and matches

In Table 4.2, for three typical choices of BBH masses, we perform a convergence test using Cauchy’s

criterion [26], namely, the sequence TN converges if and only if for each k, 〈TN , TN+k〉 → 1 as

N → ∞. One requirement of the criterion would be 〈TN , TN+1〉 → 1 as N → ∞. The values quoted

assume optimization on the extrinsic parameters but not on the intrinsic parameters. These results

suggest that the PN expansion is far from converging.

In Fig. 4.4 we plot the frequency-domain amplitude versus frequency for the T waveforms, at

different PN orders, for a (15 + 15)M� BBH. The Newtonian amplitude, ANewt(f) = f−7/6, is also

shown for comparison. In the 1PN and 2.5PN cases the flux function goes to zero before v = vTNMECO.

This means that the radiation-reaction effects become negligible during the last phase of evolution,

so the binary is able to spend many cycles at those final frequencies, skewing the amplitude with

respect to the Newtonian result. At 2PN and 3PN (or 3.5PN) orders, the evolution is stopped at

v = vTNMECO, and, although fGW
MECO � 270 − 300 Hz (see Table 4.1) the amplitude starts to deviate

from f−7/6 around 100 Hz. This is a consequence of the abrupt termination of the signal in the time

domain.

The effect of the arbitrary parameter θ̂ on the T waveforms can be seen in Table 4.14 in the

intersection between the rows and columns labeled T(3, 7/2,+2) and T(3, 7/2,−2). For three choices

of BBH masses, this table shows the maxmax matches between the search models at the top of the

columns and the target models at the left end of the rows, maximized over the mass parameters

of the search models in the columns. These matches are rather high, suggesting that the effect of

changing θ̂ is just a remapping of the BBH mass parameters. Therefore, in the following we shall
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Figure 4.4: Frequency-domain amplitude versus frequency for the T-approximated (restricted) wave-
forms, at different PN orders, for a (15 + 15)M� BBH. The 3PN and 3.5PN curves cannot be
distinguished in this graph.

consider only the case of θ̂ = 0.

A quantitative measure of the difference between the (2PN, 2.5PN) and (3PN, 3.5PN) T wave-

forms can be seen in Table 4.14 in the intersection between the rows and columns labeled T(. . .).

For three choices of BBH masses, this table shows the maxmax matches between the search models

in the columns and the target models in the rows, maximized over the search-model parameters M

and η; in the search, η is restricted to its physical range 0 < η ≤ 1/4, where 0 corresponds to the

test-mass limit, while 1/4 is obtained in the equal-mass case. These matches can be interpreted as

the fitting factors [see Eq. (4.33)] for the projection of the target models onto the search models.

The values are quite low: if the (3PN, 3.5PN) T-approximants turned out to give the true physical

signals and if we used the (2PN, 2.5PN) T-approximants to detect them, we would lose ∼ 32–49%

of the events.

4.3.2 Adiabatic PN resummed methods: Padé approximants

The PN approximation outlined above can be used quite generally to compute the shape of the GWs

emitted by BNSs or BBHs, but it cannot be trusted in the case of binaries with comparable masses in

the range M � 10–40M�, because for these sources LIGO and VIRGO will detect the GWs emitted

when the motion is strongly relativistic, and the convergence of the PN series is very slow. To cope

with this problem, Damour, Iyer and Sathyaprakash [26] proposed a new class of models based on

the systematic application of Padé resummation to the PN expansions of E(v) and F(v). This is a

standard mathematical technique used to accelerate the convergence of poorly converging or even

divergent power series.
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Figure 4.5: In the left panel, we plot the normalized flux function FPN/FNewt versus v, at different
PN orders. The two long-dashed vertical lines give v � 0.18 and v � 0.53; they show the velocity
range that corresponds to the LIGO frequency band 40 ≤ fGW ≤ 240 Hz for BBHs with total mass
in the range 10–40M�. In the right panel, we plot the percentage difference between the T- and
P-approximants, δFPT (vpeak) = 100 |FPN (vpeak) − FTN (vpeak)|/FTN (vpeak), versus the total mass
M , for N = 2, 3, at the LIGO-I peak-sensitivity GW frequency fpeak = 153 Hz [note: vpeak =
(πMfpeak)1/3].

If we know the function g(v) only through its Taylor approximant GN (v) = g0 + g1 v + · · · +

gN v
N ≡ TN [g(v)], the central idea of Padé resummation [52] is the replacement of the power series

GN (v) by the sequence of rational functions

PMK [g(v)] =
AM (v)
BK(v)

≡
∑M

j=0 aj v
j∑K

j=0 bj v
j
, (4.59)

with M +K = N and TM+K [PMK (v)] = GN (v) (without loss of generality, we can set b0 = 1). We

expect that for M,K → +∞, PMK [g(v)] will converge to g(v) more rapidly than TN [g(v)] converges

to g(v) for N → +∞.

PN energy and flux

Damour, Iyer and Sathyaprakash [26] proposed the following Padé-approximated (P-approximated)

EPN (v) and FPN (v) (for N = 2, 3) [26, 16]:

EPN =
√

1 + 2η
√

1 + ePN (v) − 1 − 1 , (4.60)

FPN =
32
5
η2 v10 1

1 − v/vPNpole

fPN (v, η) , (4.61)

where

eP2(v) = −v2 1 + 1
3η −
(
4 − 9

4η + 1
9η

2
)
v2

1 + 1
3η −
(
3 − 35

12η
)
v2

, (4.62)
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Figure 4.6: In the left panel, we plot the energy function EPN versus v, at different PN orders. In the
right panel, we plot the percentage difference between 2PN and 3PN P-approximants, δEP (vpeak) =
100 |[EP3(vpeak) − EP2(vpeak)]/EP2(vpeak)| versus the total mass M , evaluated at the LIGO-I peak-
sensitivity GW frequency fpeak = 153 Hz [note: vpeak = (πMfpeak)1/3].

M f2PN
GW (Hz) f3PN

GW (Hz)

(5 + 5)M� 572 866
(10 + 10)M� 286 433
(15 + 15)M� 191 289
(20 + 20)M� 143 216

Table 4.3: Maximum binding energy for circular orbits (MECO) using P-approximants for the energy
function EPN .

eP3(v) = −v2 1 − (1 + 1
3η + w3(η)

)
v2 − (3 − 35

12η −
(
1 + 1

3η
)
w3(η)
)
v4

1 − w3(η) v2
, (4.63)

w3 =
40

36 − 35η

[
27
10

+
1
16

(
41
4
π2 − 4309

15

)
η +

103
120

η2 − 1
270

η3

]
, (4.64)

fP2(v) =

(
1 +

c1 v

1 + c2 v
1+...

)−1

(up to c5), (4.65)

fP3(v) =

(
1 − 1712

105
v6 log

v

vP2
MECO

) (
1 +

c1 v

1 + c2 v
1+...

)−1

(up to c7). (4.66)

Here the dimensionless coefficients ci depend only on η. The ck’s are explicit functions of the

coefficients fk (k = 1, ...5),
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N (5 + 20)M� (10 + 10)M� (15 + 15)M�

〈PN , PN+1〉 〈PN , PN+1〉 〈PN , PN+1〉
2 (θ̂ = +2) 0.909 0.919 0.898
2 (θ̂ = −2) 0.942 0.968 0.943

Table 4.4: Test for the Cauchy convergence of the P-approximants. The values quoted are maxmax
matches obtained by maximizing with respect to the extrinsic parameters, but not to the intrinsic
parameters (i.e., the matches are computed for T waveforms with the same masses, but different PN
orders).

c1 = −f1 , c2 = f1 − f2
f1
, c3 =

f1 f3 − f2
2

f1 (f2
1 − f2)

, (4.67)

c4 = −f1 (f3
2 + f2

3 + f2
1 f4 − f2 (2 f1 f3 + f4))

(f2
1 − f2) (f1 f3 − f2

2 )
, (4.68)

c5 = − (f2
1 − f2) (−f3

3 + 2f2 f3 f4 − f1 f
2
4 − f2

2 f5 + f1 f3 f5)
(f1 f3 − f2

2 ) (f3
2 + f2

3 + f2
1 f4 − f2 (2 f1 f3 + f4))

, (4.69)

where

fk = Fk − Fk−1

vP2
pole

. (4.70)

Here Fk is given by Eqs. (4.54)–(4.57) [for k = 6 and k = 7, the term −856/105 log(16v2) should be

replaced by −856/105 log(16(vP2
MECO)2)]. The coefficients c7 and c8 are straighforward to compute,

but we do not show them because they involve rather long expressions. The quantity vP2
MECO is the

MECO of the energy function eP2 (defined by deP2(v)/dv = 0).

The quantity vP2
pole, given by

vP2
pole =

1√
3

√
1 + 1

3η

1 − 35
36η

, (4.71)

is the pole of eP2 , which plays an important role in the scheme proposed by Damour, Iyer and

Sathyaprakash [26]. It is used to augment the Padé resummation of the PN expanded energy and

flux with information taken from the test-mass case, where the flux (known analytically up to 5.5PN

order) has a pole at the light ring. Under the hypothesis of structural stability [26], the flux should

have a pole at the light ring also in the comparable-mass case. In that case, the light ring corresponds

to the pole of the energy, so the analytic structure of the flux is modified to include vP2
pole(η). At

3PN order, where the energy has no pole, we choose (somewhat arbitrarily) to keep using the value

vP2
pole(η) (the resulting 3PN approximation to the test-mass flux is still very good).

In the left panel of Fig. 4.5, we plot the P-approximants for the flux function FPN (v), at different

PN orders. Note that at 1PN order the P-approximant has a pole. At the LIGO-I peak-sensitivity

frequency, 153 Hz, for a (10+10)M� BBH the value of v is � 0.362, and the percentage difference

in FPN (0.362), between successive PN orders is 1.5PN → 2PN : −8%; 2PN → 2.5PN : +2.2%;
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Figure 4.7: Percentage difference δEPT (vpeak) = 100 |[EPN (vpeak) − ETN (vpeak)]/EPN (vpeak)| versus
the total mass M , for N = 2, 3, at the LIGO-I peak-sensitivity GW frequency fpeak = 153 Hz [note:
vpeak = (πMfpeak)1/3].

2.5PN → 3PN(θ̂ = −2) : +3.6%; 3PN → 3.5PN(θ̂ = −2) : +0.58%. The percentage differences

decrease as we increase the PN order. It is known that in the test-mass limit the P-approximants

converge quite well to the known exact flux function (see Fig. 3 of Ref. [26]); however, in the

equal-mass case we cannot be sure that the same is happening, because the exact flux function is

unknown. (If we assume that the equal-mass flux function is a smooth deformation of the test-mass

flux function, with η the deformation parameter, then we could expect that it does.)

In the right panel of Fig. 4.5, we plot the percentage differences between the T- and P-approximant

flux functions at different PN orders, versus the total mass M at the LIGO-I peak-sensitivity GW

frequency (153 Hz). In the left panel of Fig. 4.6, we plot the P-approximants of the energy function

versus v, at 2PN and 3PN orders, while in the right panel we plot the percentage difference between

the 2PN and 3PN P-approximants, versus v.

Definition of the models

When computing the waveforms for P-approximant adiabatic models, the integration of Eqs. (4.48) is

stopped at v = vPNMECO, which is the solution of the equation dEPN (v)/dv = 0. This will be the ending

frequency for these waveforms, and in Table 4.3 we show this frequency for typical BBH masses.

Henceforth, we shall refer to the P-approximant models as P(nPN,mPN), with (nPN,mPN) =

(2, 2.5), (3, 3.5, θ̂). [Recall that nPN and mPN are the maximum post-Newtonian order of the terms

included in the energy and flux functions E(v) and F(v).]
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Figure 4.8: Frequency-domain amplitude versus frequency for the P-approximated (restricted) wave-
form, at different PN orders, for a (15 + 15)M� BBH.

Waveforms and matches

In Table 4.4, for three typical choices of BBH masses, we perform a convergence test using Cauchy’s

criterion [26]. The values are quite high, especially if compared to the same test for the T-

approximants, shown in Table 4.2. However, as we already remarked, we do not have a way of

testing whether they are converging to the true limit.

In Fig. 4.8 we plot the frequency-domain amplitude of the P-approximated (restricted) waveform,

at different PN orders, for a (15 + 15)M� BBH. The Newtonian amplitude, ANewt(f) = f−7/6, is

also shown for comparison. At 2.5PN and 3.5PN orders, the evolution is stopped at v = vPNMECO,

and, although fGW
MECO � 190 − 290 Hz (see Table 4.3), the amplitude starts to deviate from f−7/6

around 100 Hz, well inside the LIGO frequency band. Again, this is a consequence of the abrupt

termination of the signal in the time domain.

A quantitative measure of the difference between the 2PN and 3PN P waveforms can be seen

in Table 4.14 in the intersection between the rows and columns labeled P(. . .). For three choices

of BBH masses, this table shows the maxmax matches between the search models in the columns

and the target models in the rows, maximized over the search-model parameters M and η, with the

restriction 0 < η ≤ 1/4. These matches are quite high. The same table shows also the maximized

matches (i.e., fitting factors) between T and P models : matches are low between 2PN T-approximants

and 2PN P-approximants (and viceversa), between 2PN T-approximants and 3PN P-approximants

(and viceversa), but they are high between 3PN T-approximants and 3PN P-approximants.

Why this happens can be understood from Figs. 4.5, 4.7 by noticing that at 3PN order the

percentage difference between the binding energies is rather small (≤ 0.5%), and that the percentage

difference in the flux (although still ∼ 10%) is much smaller than for the 2PN approximations.
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4.4 Nonadiabatic models

By contrast with the models discussed in Sec. 4.3, in nonadiabatic models we solve equations of

motions that involve (almost) all the degrees of freedom of the BBH systems. Once again, all

waveforms are computed in the restricted approximation of Eq. (4.45), taking the GW phase ϕGW

as twice the orbital phase ϕ.

4.4.1 Nonadiabatic PN expanded methods: Hamiltonian formalism

Working in the ADM gauge, Damour, Jaranowski and G. Schäfer have derived a PN expanded

Hamiltonian for the general-relativistic two-body dynamics [43, 45, 16]:

Ĥ(q,p) = ĤNewt(q,p) + Ĥ1PN(q,p) + Ĥ2PN(q,p) + Ĥ3PN(q,p) , (4.72)

where �HNewt (q,p) =
p2

2
− 1

q
, �H1PN (q,p) =

1

8
(3η − 1)(p2)2 − 1

2

�
(3 + η)p2 + η(n · p)2

� 1

q
+

1

2q2
, (4.73)

�H2PN (q,p) =
1

16

�
1 − 5η + 5η2

�
(p2)3 +

1

8

��
5 − 20η − 3η2

�
(p2)2 − 2η2(n · p)2p2 − 3η2(n · p)4

� 1

q

+
1

2

�
(5 + 8η)p2 + 3η(n · p)2

� 1

q2
− 1

4
(1 + 3η)

1

q3
, (4.74)

�H3PN (q,p) =
1
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. (4.75)

Here, we consider the reduced nonrelativistic Hamiltonian Ĥ ≡ HNR/µ, in the center-of-mass frame,

as a function of the reduced canonical variables p ≡ p1/µ = −p2/µ, and q ≡ (x1 − x2)/M , where

x1 and x2 are the positions of the BH centers of mass in quasi-Cartesian ADM coordinates (see

Refs. [43, 45, 16]); the scalars q and p are the (coordinate) lengths of the two vectors; and the vector

n is just q/q.

Equations of motion

The polar coordinates (r, ϕ) can be obtained from the q with the usual Cartesian-to-polar transfor-

mation. We restrict the motion to a plane, and we introduce radiation-reaction (RR) effects as in
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N (5 + 20)M� (10 + 10)M� (15 + 15)M�

〈HPN ,HPN+1〉 〈HPN ,HPN+1〉 〈HPN ,HPN+1〉
0 0.117 0.194 0.211
1 0.094 0.162 0.155

2 (θ̂ = +2) 0.267 0.367 0.326
2 (θ̂ = −2) 0.265 0.355 0.315

Table 4.5: Test for the Cauchy convergence of the HP-approximants. The values quoted are maxmax
matches obtained by maximizing with respect to the extrinsic parameters, but not to the intrinsic
parameters (i.e., the matches are computed for T waveforms with the same masses, but different PN
orders).

Ref. [15]. The equations of motion then read

dr

dt̂
=
∂Ĥ

∂pr
(r, pr, pϕ) ,

dϕ

dt̂
= ω̂ ≡ ∂Ĥ

∂pϕ
(r, pr, pϕ) , (4.76)

dpr

dt̂
+
∂Ĥ

∂r
(r, pr, pϕ) = F̂ r(r, pr, pϕ) ,

dpϕ

dt̂
= F̂ϕ[ω̂(r, pr, pϕ)] , (4.77)

where t̂ = t/M , ω̂ = ωM ; and where F̂ϕ ≡ Fϕ/µ and F̂ r ≡ F r/µ are the reduced angular and

radial components of the RR force. Assuming F r � Fϕ [15], averaging over an orbit, and using the

balance equation (4.47), we can express the angular component of the radiation-reaction force in

terms of the GW flux at infinity [15]. More explicitly, if we use the P-approximated flux, we have

F̂ϕ ≡ FPN [vω] = − 1
η v3

ω

FPN [vω ] = −32
5
η v7

ω

fPN (vω ; η)
1 − vω/v

P2
pole(η)

. (4.78)

while if we use the T-approximated flux we have

F̂ϕ ≡ FTN [vω] = − 1
η v3

ω

FTN [vω], (4.79)

where vω ≡ ω̂1/3 ≡ (dϕ/dt̂)1/3. This vω is used in Eq. (4.45) to compute the restricted waveform.

Definition of the models

In order to build a quasi-circular orbit with initial GW frequency f0, our initial conditions (rinit,

pr init, pφ init) are set by imposing ϕ̇init = πf0, ṗr init = 0 and drinit/dt̂ = −F/(ηdĤ/dr)circ, as in

Ref. [53]. The initial orbital phase ϕinit remains a free parameter.

For these models, the criterion used to stop the integration of Eqs. (4.76), (4.77) is rather

arbitrary. We decided to push the integration of the dynamical equations up to the time when we

begin to observe unphysical effects due to the failure of the PN expansion, or when the assumptions

that underlie Eqs. (4.77) [such as F̂ r � F̂ϕ], cease to be valid. Therefore, we stop the integration
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Figure 4.9: Frequency-domain amplitude versus frequency for the HT and HP (restricted) waveforms,
at different PN orders, for a (15 + 15)M� BBH.

when FTN = 0, and we define the ending frequency for these waveforms as the instantaneous GW

frequency at that time. [To be consistent with the assumption of quasi-circular motion, we require

also that the radial velocity be always much smaller than the orbital velocity, and we stop the

integration when |ṙ| > 0.3(rϕ̇) if that occurs before FTN = 0.]

We shall refer to these models as HT(nPN,mPN) (when the T-approximant is used for the

flux) or HP(nPN,mPN) (when the P-approximant is used for the flux), where nPN (mPN) denotes

the maximum PN order of the terms included in the Hamiltonian (the flux). We shall consider

(nPN,mPN) = (1,1.5), (2,2.5), (3,3.5,θ̂).

Waveforms and matches

In Table 4.5, for three typical choices of BBH masses, we perform a convergence test using Cauchy’s

criterion [26]. The values are very low. In Fig. 4.9 we plot the frequency-domain amplitude of the

(restricted) waveform, at different PN orders, for a (15 + 15)M� BBH. The Newtonian amplitude,

ANewt(f) = f−7/6, is also shown for comparison. For HT(2,5/2), the flux function goes to zero first,

so the binary is able to spend many cycles at high frequencies, skewing the amplitude with respect

to the Newtonian result, and producing the oscillations seen in Fig. 4.9. For HP and for HT at all

other PN orders, by contrast with the adiabatic models [see Figs. 4.4, 4.8], the dynamical evolution

ends with a plunge (of sorts) where the motion is still quasi-circular. As a result, the amplitude

does not plunge at high frequency, and in fact it does not deviate much (especially at 3PN order)

from the Newtonian result.

Quantitative measures of the difference between HT and HP models at 3PN order, and of the

difference between the Hamiltonian models and the adiabatic models, can be seen in Table 4.14.

For three choices of BBH masses, this table shows the maxmax matches between the search models

in the columns and the target models in the rows, maximized over the search-model parameters M
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and η, with the restriction 0 < η ≤ 1/4. Notice that the matches with the adiabatic models are low

at 2PN order, but very high at 3PN order. Once again we see that at 3PN order the various models

are not very different, at least when the match is maximized over the target-model parameters (i.e.,

for the purpose of signal detection as opposed to parameter-estimation).

4.4.2 Nonadiabatic PN expanded methods: Lagrangian formalism

Equations of motion

Working in the harmonic gauge, Damour and Deruelle [42], and then Kidder, Will and Wiseman

[54] have used a Lagrangian formalism to derive equations of motions for the general-relativistic

two-body dynamics. The equations read

ẍ = aN + aPN + a2PN + a2.5RR + a3.5RR , (4.80)

where
aN = −M

r2
n̂ , (4.81)

aPN = −M
r2

�
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�
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r
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2
ηṙ2
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− 2(2 − η)ṙv



, (4.82)
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a2.5RR =
8

5
η
M2

r3

�
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Here the vector x ≡ x1 − x2 is the difference, in pseudo–Cartesian harmonic coordinates [42, 54],

between the positions of the BH centers of mass; the vector v = dx/dt is the corresponding velocity;

the scalar r is the (coordinate) length of x; the vector n̂ ≡ x/r; and, overdots denote time derivatives

with respect to the post-Newtonian time.

Note that we have included neither the 3PN order corrections a3PN derived in Ref. [44], nor

the 4.5PN order term a4.5PN for the radiation-reaction force computed in Ref. [55]. Unlike the

Hamiltonian models, where the radiation-reaction effects were averaged over circular orbits but
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T(2,5/2) P(2,5/2) EP(2,5/2) HT(3,7/2,0)
L(2,1) mm m1 m2 mm m1 m2 mm m1 m2 mm m1 m2

(15+15)M� 0.836 23.30 24.00 0.915 13.13 18.12 0.996 5.94 34.49 0.828 17.80 25.93
(15+5)M� 0.714 3.85 30.31 0.955 3.25 21.85 0.988 2.97 23.38 0.972 3.82 18.42
(5+5)M� 0.878 1.84 14.50 0.969 2.60 9.17 0.958 2.73 8.69 0.966 2.64 8.97

Table 4.6: Fitting factors [see Eq. (4.33)] for the projection of the L(2, 1) (target) waveforms onto
the T(2, 5/2), P(2, 5/2), EP(2, 5/2), HT(2, 7/2) (search) models. The values quoted are obtained by
maximizing the maxmax (mm) match over the search-model parameters m1 and m2.

resummed up to 3PN order, here radiation-reaction effects are instantaneous and can be used to

compute generic orbits, but are given accurate only to 1PN order beyond the leading quadrupole

term.

We compute waveforms in the quadrupole approximation of Eq. (4.45), defining the orbital

phase ϕ as the angle between x and a fixed direction in the orbital plane, and the invariantly defined

velocity v as (Mϕ̇)1/3.

Definition of the models

For these models, just as for the HT and HP models, the choice of the endpoint of evolution is rather

arbitrary. We decided to stop the integration of the dynamical equations when we begin to observe

unphysical effects due to the failure of the PN expansion. Therefore, we stop the integration when

the PN-expanded center-of-mass binding energy (given by Eqs. (2.7a)–(2.7e) of Ref. [19]) begins to

increase, instead of continuing to decrease. The instantaneous GW frequency at that time will then

be the ending frequency for these waveforms. We shall refer to these models as L(nPN,mPN), where

nPN (nPN) denotes the maximum PN order of the terms included in the Hamiltonian (the radiation-

reaction force). We shall consider (nPN,mPN) = (1, 1), (2, 1). Table 4.6 shows the maxmax match

between the L-approximants and some of the other two-body models.

4.4.3 Nonadiabatic PN resummed methods: the effective-one-body ap-

proach

The basic idea of the effective-one-body approach [14] is to map the real two-body conservative

dynamics, generated by the Hamiltonian (4.72) and specified up to 3PN order, onto an effective

one-body problem where a test particle of mass µ = m1m2/M (with m1 and m2 the BH masses,

and M = m1 +m2) moves in an effective background metric geff
µη given by

ds2eff ≡ geff
µη dx

µ dxη = −A(r) c2dt2 +
D(r)
A(r)

dr2 + r2 (dθ2 + sin2 θ dϕ2) , (4.86)
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where

A(r) = 1 + a1
GM

c2r
+ a2

(
GM

c2r

)2

+ a3

(
GM

c2r

)3

+ a4

(
GM

c2r

)4

+ · · · , (4.87)

D(r) = 1 + d1
GM

c2r
+ d2

(
GM

c2r

)2

+ d3

(
GM

c2r

)3

+ · · · . (4.88)

The motion of the particle is described by the action

Seff = −µc
∫
dseff . (4.89)

For the sake of convenience, in this section we shall use same symbols of Sec. 4.4.1 to denote different

physical quantities (such as coordinates in different gauges). The mapping between the real and the

effective dynamics is worked out within the Hamilton-Jacobi formalism, by imposing that the action

variables of the real and effective description coincide (i.e., Jreal = Jeff , Ireal = Ieff , where J denotes

the total angular momentum, and I the radial action variable [14]), but allowing the energy to

change,
ENR
eff

µc2
=

ENR
real

µc2

[
1 + α1

ENR
real

µc2
+ α2

(ENR
real

µc2

)2

+ α3

(ENR
real

µc2

)3

+ · · ·
]
, (4.90)

here the nonrelativistic effective energy ENR
eff = Eeff − µ c2, where the relativistic effective energy

Eeff is defined uniquely by the action (4.89). The nonrelativistic real energy ENR
real ≡ H(q,p) where

H(q,p) is given by Eq. (4.72) with H(q,p) = µ Ĥ(q,p). From now on, we shall relax our notation

and set G = c = 1.

Equations of motion

Damour, Jaranowski and Schäfer [16] found that, at 3PN order, this matching procedure contains

more equations to satisfy than free parameters to solve for (a1, a2, a3,, d1, d2, d3 and α1, α2, α3).

These authors suggested the following two solutions to this conundrum. At the price of modifying

the coefficients of the effective metric at 1PN and 2PN levels and the energy map, at 3PN order

it is still possible to map uniquely the real two-body dynamics onto the dynamics of a test mass

moving on a geodesic (for details, see App. A of Ref. [16]). However, this procedure appears very

complicated; more importantly, it seems awkward to have to compute the 3PN Hamiltonian as a

foundation for deriving the matching at the 1PN and 2PN levels. The second solution is to abandon

the hypothesis that the effective test mass moves along a geodesic, and to augment the Hamilton-

Jacobi equation with (arbitrary) higher-derivative terms that provide enough coefficients to complete

the matching. With this procedure, the Hamilton-Jacobi equation reads

0 = µ2 + gµηeff (x) pµ pη +Aµηρσ(x) pµ pη pρ pσ + · · · . (4.91)
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M f1PN
GW (Hz) f2PN

GW (Hz) f3PN
GW (Hz)

(5 + 5)M� 446 473 570
(10 + 10)M� 223 236 285
(15 + 15)M� 149 158 190
(20 + 20)M� 112 118 143

Table 4.7: GW frequency at the ISCO, computed using the EOB-improved Hamiltonian.

Because of the quartic terms Aαβγδ, the effective 3PN relativistic Hamiltonian is not uniquely fixed

by the matching rules defined above; the general expression is:

ENR
eff ≡ Ĥeff =

√
A(q)
[
1 + p2 +

(
A(q)
D(q)

− 1
)

(n · p)2 +
1
q2

(z1(p2)2 + z2 p2(n · p)2 + z3(n · p)4)
]
,

(4.92)

here we use the reduced relativistic effective Hamiltonian Ĥeff = Heff/µ, q and p are the reduced

canonical variables, obtained by rescaling the canonical variables by M and µ, respectively. The

coefficients z1, z2 and z3 are arbitrary coefficients that satisfy the constraint

8z1 + 4z2 + 3z3 = 6(4 − 3η) η . (4.93)

In Eq. (4.92),

A(r) = 1 − 2
r

+
2η
r3

+
(

94
3

− 41
32
π2

)
η

r4
, (4.94)

D(r) = 1 − 6η
r2

+ 2(3η − 26)η
η

r3
, (4.95)

where we set r = |q|. The reduction to the one-body dynamics fixes the arbitrary coefficients in

Eq. (4.90) uniquely to α1 = η/2, α2 = 0, α3 = 0, and provides the resummed (improved) Hamiltonian

[obtained by solving for ENR
real in Eq. (4.90) and imposing H improved ≡ ENR

real]:

H improved = M

√
1 + 2η

(
Heff − µ

µ

)
. (4.96)

Including radiation-reaction effects, we can then write the Hamilton equations in terms of the reduced

quantities Ĥ improved = H improved/µ, t̂ = t/M , ω̂ = ωM [15],

dr

dt̂
=
∂Ĥ improved

∂pr
(r, pr, pϕ) ,

dϕ

dt̂
= ω̂ ≡ ∂Ĥ improved

∂pϕ
(r, pr, pϕ) , (4.97)

dpr
dt

+
∂Ĥ improved

∂r
(r, pr, pϕ) = 0 ,

dpϕ

dt̂
= F̂ϕ(ω̂(r, pr, pϕ)) , (4.98)
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N (5 + 20)M� (10 + 10)M� (15 + 15)M�
〈EPN ,EPN+1〉 〈EPN ,EPN+1〉 〈EPN ,EPN+1〉

0 0.310 0.389 0.481
1 0.768 0.775 0.873

2 (θ̂ = +2) 0.868 0.864 0.899
2 (θ̂ = −2) 0.915 0.929 0.950

Table 4.8: Cauchy convergence of the EP-approximants. The values quoted assume optimization on
the extrinsic parameters but the same intrinsic parameters (i.e., they assume the same masses). At
3PN order, we used z1 = 0 = z2.

where for the ϕ component of the radiation-reaction force we use the T- and P-approximants of the

flux function.

The innermost stable circular orbit (ISCO) is defined as the solution of ∂H improved
0 /∂r = 0 =

∂2H improved
0 /∂r2, where H improved

0 (r, pr, pϕ) = H improved(r, 0, pϕ). Here we find it convenient to

consider the simple case where z1 = 0 = z2. In the following, we shall investigate the effect of

different choices for these parameters. We also notice that

Ĥ2
eff(r, 0, pϕ) ≡Wpϕ = A(r)

(
1 +

p2
ϕ

r2

)
, (4.99)

so we can extract the ISCO by imposing ∂Wpϕ(r)/∂r = 0 = ∂2Wpϕ(r)/∂2r. Using the A(r) given

by Eq. (4.94) it is straightforward to prove that at 3PN order there is no ISCO. To improve the

behavior of the PN expansion of A(r) and introduce an ISCO, Damour, Jaranowski and Schäfer [16]

proposed to replace A(r) with the Padé approximants

AP2(r) =
r(−4 + 2r + η)
2r2 + 2η + rη

, (4.100)

AP3(r) =
r2[(a4(η) + 8η − 16) + r(8 − 2η)]

r3 (8 − 2η) + r2 (a4(η) + 4η) + r (2a4(η) + 8η) + 4η2
, a4(η) =

(
94
3

− 41
32
π2

)
η .

(4.101)

Using those expressions for A(r), we show in Table 4.7 the GW frequency at the ISCO for some

typical choices of the binary masses.

Definition of the models

For these models, we use the initial conditions laid down in Ref. [53], and also adopted in this chapter

for the HT and HP models (see Sec. 4.4.1). At 2PN order we stop the integration of the Hamilton

equations at the light ring given by the solution to the equation r3 − 3r2 + 5η = 0 [15]. At 3PN

order we find that the orbital frequency and the binding energy start to decrease before the binary
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can reach the 3PN light ring, so we stop the evolution when ˙̂ω = 0. It may also happen that the

radial velocity becomes comparable to the angular velocity; in this case, the approximation used to

introduce the RR effects into the conservative dynamics is no longer valid, so we stop the integration

when ṙ/(rϕ̇) reaches −0.3. In any of these cases, the instantaneous GW frequency at the time when

the integration is stopped defines the ending frequency for these waveforms.

We shall refer to the EOB models (E-approximants) as ET(nPN,mPN) (when the T-approximant

is used for the flux) or EP(nPN,mPN) (when the P-approximant is used for the flux), where nPN

(mPN) denotes the maximum PN order of the terms included in the Hamiltonian (flux). We shall

consider (nPN,mPN) = (1, 1.5), (2, 2.5), (3, 3.5, θ̂).

Waveforms and matches

In Table 4.13 we investigate the effect of the unknown parameters z1 and z2 that appear in the

EOB-Hamiltonian at 3PN order. The coefficients z1 and z2 are in principle completely arbitrary.

To keep the EOB description consistent, however, these coefficients cannot be set much larger than

order unity. Thus, in Table 4.13 we perform a few tests with z1 = ±1 and z2 = ±1. With a few

exceptions, it seems that the effect of changing z1 and z2 is nearly the same as a remapping of the

BBH mass parameters. Therefore, in the following we shall consider only the case z1 = z2 = 0.

In Table 4.8, for three typical choices of BBH masses, we perform a convergence test using

Cauchy’s criterion. The values are quite high, especially if compared to the same test for the T- and

HP-approximants, shown in Tables 4.2, 4.5. However, as for the P-approximants, we do not have

a way of testing whether they are converging to the true limit. The frequency-domain amplitude

of the EP-approximated (restricted) waveform is plotted in Fig. 4.10, at different PN orders, for

a (15 + 15)M� BBH. The evolution of the EOB models contains a plunge characterized by quasi-

circular motion [15]. This plunge causes the amplitude to deviate from the Newtonian prediction

f−7/6 around 200 Hz, which is a higher frequency than for the adiabatic models [see Figs. 4.4, 4.8].

In Table 4.12, for some typical choices of the masses, we evaluate the maxmax matches between

the 2PN and 3PN ET-approximants and the 2PN and 3PN T-approximants. This comparison should

emphasize the effect of moving from the adiabatic orbital evolution, ruled by the energy-balance

equation, to the full Hamiltonian dynamics, ruled by the Hamilton equations. While the two models

are quite distant at 2PN order, the matches are very high at 3PN order, but the estimation of

the mass is not very good. The results of Table 4.12 suggest also that the effect of the unknown

parameter θ̂ is rather small, at least if θ̂ is of order unity, so in the following we shall always set

θ̂ = 0.
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Figure 4.10: Frequency-domain amplitude versus frequency for the EP-approximated (restricted)
waveform, at different PN orders, for a (15 + 15)M� BBH.

4.5 Comparison between the two-body models

In Fig. 4.11 we show the energy function E(v) for a few selected two-body models. Notice that the

2PN and 3PN T energies are much closer to each other than the 2PN and 3PN P energies and the

2PN and 3PN E energies are; notice also that the 3PN T and P energies are very close.

In Fig. 4.12 we plot the optimal signal-to-noise ratio ρopt for a few selected models. The value of

ρopt is computed using Eqs. (4.10), (4.32), with the waveform given by Eq. (4.45), for a luminosity

distance of 100 Mpc and the rms value of Θ = 8/5 (see discussion below Eq. (4.45)). The very large

result for the 2.5PN T-approximant waveform can be explained as follows. As shown in Fig. 4.4 and

discussed in Sec. 4.3.1, the 2.5PN T flux function goes to zero before the orbit can reach the usual

ending point at the MECO, so the 2.5PN GW amplitude differs considerably from the Newtonian

result. For high-mass BBHs, this happens inside the LIGO frequency band. Of course we know that

the true flux function should not go to zero, so we give little credit to the 2.5PN T-approximant.

Notice also that, because the EOB models have a plunge, their signal-to-noise ratios are much

higher, at least for M ≥ 30M�, than those for the adiabatic models (which we artificially cut off

before the plunge). This result confirms the similar conclusion drawn in Ref. [12].

4.6 Performance of the Fourier-domain detection templates

As we have seen in the previous sections, the PN models (expanded and resummed, adiabatic and

nonadiabatic) that we have considered rely on a wide variety of very different dynamical equations,

so the task of consolidating them under a single set of generic equations seems arduous. On the other

hand, we have reason to suspect (from the values of the matches, and from direct investigations) that



105

Figure 4.11: Binding energy E(v) as a function of the velocity parameter v, for equal-mass BBHs.
We plot different PN orders for selected PN models.

the frequency-domain amplitude and phasing (the very ingredients that enter the determination of

the matches) are quite similar for all the PN models. We therefore shall create a template bank that

models directly the Fourier transform of the GW signals, by writing the amplitude and phasing as

simple polynomials in the GW frequency fGW. We shall take the specific powers of fGW that appear

in these polynomials from the Fourier transforms of PN expanded adiabatic signals, as computed

in the stationary-phase approximation; however, we shall not constrain their coefficients to their

functional dependence on the physical parameters. More specifically, we define our generic family

of Fourier-domain detection templates as

heff(f) = Aeff(f) eiψeff (f) , (4.102)

where

Aeff(f) = f−7/6
(
1 − αf1/3

)
θ(fcut − f) , (4.103)

ψeff(f) = 2πft0 + φ0 + f−5/3
(
ψ0 + ψ1/2 f

1/3 + ψ1 f
2/3 + ψ3/2 f + ψ2 f

4/3 + · · ·
)
,(4.104)

where t0 and φ0 are the time of arrival and the frequency-domain phase offset, and where θ(. . .) is

the Heaviside step function.

It turns out that we need only two of the phasing parameters, ψ0, and ψ3/2, and two amplitude

parameters, fcut and α, to match all the PN models of Secs. 4.3, 4.4 with high fitting factor FF.

This is possible largely because we restrict our focus to BBHs with relatively high masses, where

the number of GW cycles in the LIGO range (and thus the total range of the phasing ψ(f) that
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Figure 4.12: Signal-to-noise ratio at 100 Mpc versus total mass M , for selected PN models. We
denote by SQP the model obtained with the standard quadrupole prediction for the inspiral energy
spectrum and with the cutoff frequency fcutoff = 0.02/M used in Ref. [11].

we need to consider) is small. The amplitude parameters fcut and α are useful because, unlike the

case of BNSs, BBH waveforms might well end within the LIGO band. These parameters change the

shape of the frequency-domain amplitude by respectively cutting it off and reducing it in a limited

frequency range.

The significance of this cut with respect to true physical signals deserves some discussion. If the

best match for the physical signal g is the template h(fcut), which ends at the instantaneous GW

frequency fcut, then we can be certain to lose a fraction of the optimal ρ that is given approximately

by

ρcut

ρopt
≤
√∫ fcut

0
|g̃(f)|2
Sn(f) df√∫∞

0
|g̃(f)|2
Sn(f) df

� 1 − 1
2

∫∞
fcut

|g̃(f)|2
Sn(f) df∫∞

0
|g̃(f)|2
Sn(f) df

. (4.105)

On the other hand, if we try to match g with the same template family without cuts (and if indeed

the h’s are completely inadequate at modeling the amplitude and phasing of g above fcut), then

even the best-match template u(no cut) will yield an additional loss in ρ caused by the fact that

we are spreading the power of the template beyond the range where it can successfully match g.

Mathematically, this loss comes from the normalization of the template, and it is given by

ρno cut

ρcut
≤
√∫ fcut

0
|h̃(f)|2
Sn(f) df√∫∞

0
|h̃(f)|2
Sn(f) df

� 1 − 1
2

∫∞
fcut

|h̃(f)|2
Sn(f) df∫∞

0
|h̃(f)|2
Sn(f) df

. (4.106)

If we assume that g and u(no cut) have roughly the same amplitude distribution, the two losses are

similar.
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In the end, we might be better off cutting templates if we cannot be sure that their amplitude

and phasing, beyond a certain frequency, are faithful representations of the true signal. Doing so,

we approximately halve the worst-case loss of ρ, because instead of losing a factor

ρno cut

ρcut

ρcut

ρopt
� 1 − 1

2

∫∞
fcut

|h̃(f)|2
Sn(f) df∫∞

0
|h̃(f)|2
Sn(f) df

− 1
2

∫∞
fcut

|g̃(f)|2
Sn(f) df∫∞

0
|g̃(f)|2
Sn(f) df

� 1 −
∫∞
fcut

|g̃(f)|2
Sn(f) df∫∞

0
|g̃(f)|2
Sn(f) df

, (4.107)

we lose only the factor ρcut/ρopt. On the other hand, we do not want to lose the signal-to-noise

ratio that is accumulated at high frequencies if our templates have a fighting chance of matching the

true signal there; so it makes sense to include in the detection bank the same template with several

different values of fcut.

In Table 4.15, we list the minmax (see Sec. 4.2) fitting factor for the projection of the PN models

onto our frequency-domain detection templates, for a set of BBH masses ranging from (5+5)M� to

(20+20)M�. In computing the fitting factors we used the simplicial search algorithm amoeba [57] to

search for the optimal set of parameters (ψ0, ψ3/2, fcut, α) (as always, the template’s time of arrival

and initial phase were automatically optimized as described in Sec. 4.2). From Table 4.15 we draw

the following conclusions:

1. All the adiabatic models (T and P) are matched with fitting factors FF > 0.97. Lower-

mass BBHs are matched better than higher-mass BBHs, presumably because for the latter

the inspiral ends at lower frequencies within the LIGO band, producing stronger edge effects

that the detection templates cannot capture fully. 3PN models are matched better than 2PN

models.

2. The effective-one-body models (ET and EP) are matched even better than the adiabatic mod-

els, presumably because they have longer inspirals and less severe edge effects at the end of

inspiral. Unlike the adiabatic models, however, ET and EP are matched better for higher-

mass BBHs. In fact, all the FFs are > 0.99 except for the (5 + 5)M�, where FF � 0.979.

The reason for this is probably that this low-mass BBH has more GW cycles in the LIGO fre-

quency band than any other one, and the two phasing parameters of our detection templates

cannot quite model the evolution of the phasing. [In the adiabatic models, these effects may

be overshadowed by the loss in signal-to-noise ratio due to the edge effects at high frequencies.]

3. The Hamiltonian models (HT and HP) are matched the worst: usually FF > 0.96, but there

are several exceptions, with FF as low as 0.944. For these models, the overlaps are lower in

the equal-mass cases, where the ending frequencies of the waveforms are much higher than for

the other models; it seems that the detection templates are not able to reproduce this late

portion of the waveforms (this might not be so bad, because it does not seem likely that this

portion of the signal reflects the true behavior of BBH waveforms).
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Finally, we note that our amplitude function Aeff(f) is a linear combination of two terms, so we

can search automatically over the correction coefficient α, in essentially the same way as discussed

in Sec. 4.2 for the orbital phase. In other words, α is an extrinsic parameter.

4.6.1 Internal match and metric

To understand the matches between the Fourier-domain templates and the PN models, and to

prepare to compute the number of templates needed to achieve a given (internal) MM, we need first

to derive an expression for the match between two Fourier-domain detection templates.

We shall first restrict our consideration to detection templates with the same amplitude function

(i.e., the same α and fcutoff). The overlap 〈h(ψ0, ψ3/2), h(ψ0+∆ψ0, ψ3/2+∆ψ3/2)〉 between templates

with close values of ψ0 and ψ3/2 can be described (to second order in ∆ψ0 and ∆ψ3/2) by the Owen

metric gij [27]:

〈h(ψ0, ψ3/2), h(ψ0 + ∆ψ0, ψ3/2 + ∆ψ3/2)〉 = 1 −
∑

i,j=0,3/2

gij ∆ψi∆ψj . (4.108)

The metric coefficients gij can be evaluated analytically from the overlap

〈h(ψ0, ψ3/2), h(ψ0 + ∆ψ0, ψ3/2 + ∆ψ3/2)〉 � (4.109)[
max

∆φ0,∆t0

∫
df

|A(f)|2
Sh(f)

cos

(∑
i

∆ψi
fni

+ ∆φ0 + 2πf∆t0

)]/[∫
df

|A(f)|2
Sh(f)

]

or approximately

1 − 1
2

 max
∆φ0,∆t0

∫
df

|A(f)|2
Sh(f)

(∑
i

∆ψi
fni

+ ∆φ0 + 2πf∆t0

)2
/[∫ df |A(f)|2

Sh(f)

]
. (4.110)

where n0 ≡ 5/3 and n3/2 ≡ 2/3. Comparison with Eq. (4.108) then gives

∑
i,j

gij ∆ψi∆ψj =
1
2

min
∆φ0,∆t0

( ∆ψ0 ∆ψ3/2

)
M(1)

 ∆ψ0

∆ψ3/2

 + (4.111)

(
∆φ0 2π∆t0

)
M(2)

 ∆ψ0

∆ψ3/2

+ (4.112)

2
(

∆φ0 2π∆t0
)

M(3)

 ∆φ0

2π∆t0

 (4.113)
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where the M(1)...(3) are the matrices

M(1) =

 J(2n0) J(n0 + n3/2)

J(n0 + n3/2) J(2n3/2)

 , (4.114)

M(2) =

 J(n0) J(n3/2)

J(n0 − 1) J(n3/2 − 1)

 , (4.115)

M(3) =

 J(0) J(−1)

J(−1) J(−2)

 , (4.116)

and where

J(n) ≡
[∫

df
|A(f)|2
Sh(f)

1
fn

]/[∫
df

|A(f)|2
Sh(f)

]
. (4.117)

Since M(3) describes the mismatch caused by (∆φ0,∆t0), it must be positive definite; because

the right-hand side of (4.111) reaches its minimum with respect to variations of ∆φ0 and ∆t0 when

2M(2)

 ∆ψ0

∆ψ3/2

+ 2M(3)

 ∆φ0

2π∆t0

 = 0 , (4.118)

we obtain

gij =
1
2

[
M(1) − MT

(2)M
−1
(3)M(2)

]
ij
. (4.119)

We note also that the mismatch 〈h(ψ0, ψ3/2), h(ψ0 +∆ψ0, ψ3/2 +∆ψ3/2)〉 is translationally invariant

in the (ψ0, ψ3/2) plane, so the metric gij is constant everywhere.

In the left panel of Fig. 4.13 we plot the iso-match contours (at matches of 0.99, 0.975 and 0.95)

in the (∆ψ0,∆ψ3/2) plane, as given by the metric (4.119) [solid ellipses], compared with the actual

values obtained from the numerical computation of the matches [dashed lines]. For our purposes,

the second-order approximation given by the metric is quite acceptable. In this computation we use

a Newtonian amplitude function A(f) = f−7/6 [i.e., we set α = 0 and we do not cut the template

in frequency domain].

We move now to the mismatch induced by different cutoff frequencies fcut. Unlike the case of

the ψ0, ψ3/2 parameters, this mismatch is first order in ∆fcut, so it cannot be described by a metric.

Suppose that we have two detection templates h(fcut) and h(fcut + ∆fcut) with the same phasing
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Figure 4.13: In the left panel, we plot the iso-match contours for the function 〈h(ψ0, ψ3/2), h(ψ0 +
∆ψ0, ψ3/2 + ∆ψ3/2)〉; contours are given at matches of 0.99, 0.975 and 0.95. Solid lines give the
indications of the Owen metric; dashed lines give actual values. Here we use a Newtonian amplitude
function A(f) = f−7/6 [we set α = 0 and we do not cut the template in the frequency domain].
In the right panel, we plot the values of ∆fcut (versus fcut) required to obtain matches
〈h(fcut), h(fcut + ∆fcut)〉 of 0.95 (uppermost curve), 0.975 and 0.99 (lowermost). In the region
below each contour the match is larger than the value quoted for the contour. Again, here we use a
Newtonian amplitude function A(f) = f−7/6 [we set α = 0].

and amplitude, but different cutoff frequencies. The match is then given by

〈h(fcut), h(fcut + ∆fcut)〉 =

[∫ fcut

0
df |A(f)|2

Sh(f)

]
[∫ fcut

0 df |A(f)|2
Sh(f)

]1/2 [∫ fcut+∆fcut

0 df |A(f)|2
Sh(f)

]1/2 (4.120)

=

 ∫ fcut

0 df |A(f)|2
Sh(f)∫ fcut+∆fcut

0 df |A(f)|2
Sh(f)

1/2 (4.121)

� 1 −
[ |∆fcut|

2
|A(f)|2
Sh(f)

]/[∫ fcut

0

df
|A(f)|2
Sh(f)

]1/2
. (4.122)

This result depends strongly on fcut. In the right panel of Fig. 4.13 we plot the values of ∆fcut

that correspond to matches of 0.95, 0.975 and 0.99, according to the first order approximation [solid

lines], and to the exact numerical calculations [dashed lines], given respectively in Eqs. (4.122) and

(4.121). In the region below each contour the match is larger than the value that characterizes the

contour.

4.6.2 Construction of the detection template bank: parameter range

All the PN target models are parametrized by two independent numbers (e.g., the two masses or

the total mass and the mass ratio); if we select a range of interest for these parameters, the resulting

set of PN signals can be seen as a two-dimensional region in the (m1,m2) or (M,η) plane. Under

the mapping that takes each PN signal into the Fourier-domain detection template that matches it

best, this two-dimensional region is projected into a two-dimensional surface in the (ψ0, ψ3/2, fcut)
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Figure 4.14: Projection of the ET(2, 5/2) waveforms onto the frequency-domain detection template
space. The correction parameter α is set to 0. The (ψ0, ψ3/2, fcut) surface is interpolated from the
then mass pairs shown in Table 4.15.

parameter space (with the fourth parameter α = 0. As an example, we show in Fig. 4.14 the

projection of the ET(2,5/2) waveforms with (single-BH) masses 5–20 M�. The 17 models tested in

Secs. 4.3, 4.4 would be projected into 17 similar surfaces.

It is hard to visualize all three parameters at once, so we shall start with the phasing parameters

ψ0 and ψ2/3. In Fig. 4.15, we plot the (ψ0, ψ3/2) section of the PN-model projections into the

(ψ0, ψ3/2, fcutoff) space, with solid diamonds showing the BBHs with the same set of ten mass pairs

as in Table 4.15. Each PN model is projected to a curved-triangular region, with boundaries given

by the sequences of BBHs with masses (m+m) (equal mass), (20 +m) and (m+ 5). In Fig. 4.15,

these boundaries are plotted using thin dashed lines, for the models T(2,5/2) (the uppermost in the

plot), HT(3,7/2,θ̂ = 2) (in the middle), and P(2,5/2) (lowest).

As we can see, different PN models can occupy regions with very different areas, and thus require

a very different number of detection templates to match them with a given MMT. Among these

three models, T(2,5/2) requires the least number of templates, P(2,5/2) requires a few times more,

and HT(3,7/2,θ̂ = 2) requires many more. This is consistent with the result by Porter [56] that for

the same range of physical parameters, T waveforms are more closely spaced than P waveforms, so

fewer are needed to achieve a certain MM. In this plot we have also linked the points that correspond

to the same BBH parameters in different PN models. In Fig. 4.15, these lines (we shall call them

mass lines) lie all roughly along one direction.

A simple way to characterize the difference between the PN target models is to evaluate the

maxmax end-to-end match between detection templates at the two ends of the mass lines (i.e., the

match between the detection templates with the largest and smallest ψ3/2 among the projections
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m1 m2 end-to-end match Nend to end

5 5 0.478 37
10 5 0.434 41
15 5 0.398 46
20 5 0.347 52
10 10 0.449 40
15 10 0.443 40
20 10 0.428 42
15 15 0.482 36
20 15 0.464 38
20 20 0.438 41

Table 4.9: End-to-end matches and number of templates (for MM � 0.98) along the mass lines of
Fig. 4.15.

of PN waveforms with the same mass parameters m1, m2); we wish to focus first on the effects of

the phasing parameters, so we do not cut the templates in the frequency domain and we set α = 0.

We compute also a naive end-to-end number of templates, Nend to end, by counting the templates

required to step all along the mass line while maintaining at each step a match � 0.98 between

neighboring templates. A simple computation yields Nend to end = log(end-to-end match)/ log(0.98).

The results of this procedure are listed in Table 4.9. Notice that, as opposed to the fitting factors

between template families computed elsewhere in this chapter (which are maximized over the BBH

mass parameters of one of the families), these matches give a measure of the dissimilarity between

different PN models for the same values of the BBH parameters; thus, they provide a crude estimate

of how much the detection template bank must be enlarged to embed all the various PN models.

We expect that the projection of a true BBH waveform onto the (ψ0, ψ3/2) plane will lie near the

mass line with the true BBH parameters, or perhaps near the extension of the mass line in either

direction. For this reason we shall lay down our detection templates in the region traced out by the

thick dashed lines in Fig. 4.15, which was determined by extending the mass lines in both directions

by half of their length.

We move on to specifying the required range of fcut for each (ψ0, ψ3/2). For a given PN model

and BBH mass parameters, we have defined the ending frequency fend as the instantaneous GW

frequency at which we stop the integration of the PN orbital equations. We find that usually the fcut

of the optimally matched projection of a PN template is larger than the fend of the PN template.

This is because the abrupt termination of the PN waveforms in the time domain creates a tail in

the spectrum for frequencies higher than fend. With fcut > fend and α > 0, the detection templates

can mimic this match and gain a higher match with the PN models. Now, since we do not know the

details of the plunge for true BBH inspiral, it is hard to estimate where the optimal fcut might lie,

except perhaps imposing that it should be larger than fend. A possible strategy is to set the range

of fcut as the range swept by fend across the PN models.
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Figure 4.15: Projection of the PN waveforms onto the (ψ0,ψ3/2) plane, for BBHs with masses
(5 + 5)M�, (10 + 5)M�, . . . , (20 + 20)M� (see Table 4.15). The projection was computed by
maximizing the maxmax match over the parameters ψ0, ψ3/2 and fcut; the correction coefficient α
was set to zero. The thin dotted and dashed lines show the boundaries of the projected images for
the models (from the top) T(2,5/2), HT(3,7/2,θ̂ = 2) and P(2,5/2). Solid lines (the mass lines) link
the images of the same BBH for different PN models. The ends of the mass lines are marked with the
BBH masses and with the minimum value fendmin (across all the PN models) of the instantaneous
GW frequency at which we stop the integration of the PN orbital equations. Finally, the thick
dashed lines delimit the region that will be covered by the detection template bank; a few (ψ0, ψ3/2)
coordinates are marked around the contour. The region is further subdivided into four subregions
I–IV that group the mass lines with very similar ending frequencies fendmin.

In Table 4.10 we show the minimum (fendmin) and maximum (fendmax) ending frequencies found

across the PN models for given BBH mass parameters. We have also marked the minimum ending

frequency in Fig. 4.15 under the corresponding mass lines. We show also the match of the two

detection templates h(fcut = fendmin) and h(fcut = fendmax), and the number N cut
mass line of interme-

diate templates with different fcut needed to move from h(fendmin) to h(fendmax) while maintaining

at each step a match � 0.98 between neighboring templates. It is easy to see that this number is

N cut
mass line = log〈h(fendmin), h(fendmax)〉/ log(0.98). The match was computing using a Newtonian

amplitude function A(f) = f−7/6 [we set α = 0], and maximizing over the parameters ψ0 and ψ3/2.

Under our previous hypothesis that the projection of a true BBH waveform would lie near the

corresponding mass line, we can use the numbers in Table 4.10 to provide a rough estimate of the



114

m1 m2 fendmin fendmax 〈h(fendmin), h(fendmax)〉 Nend to end

5 5 571.9 >1000 0.997 0.2
10 5 370.1 >1000 0.986 0.7
15 5 267.5 452.7 0.968 1.6
20 5 196.0 358.0 0.919 4.2
10 10 286.0 >1000 0.968 1.6
15 10 226.3 >1000 0.936 3.3
20 10 185.1 >1000 0.889 5.8
15 15 190.6 >1000 0.897 5.4
20 15 162.5 >1000 0.844 8.4
20 20 143.0 933.1 0.787 11.9

Table 4.10: Ranges for the ending frequencies of PN waveforms along the mass lines of Fig. 4.15. The
last two columns show the match between the two detection templates at the ends of the range and
the number of templates needed to step along the range while always maintaining a match � 0.98
between neighboring templates. When computing these matches, we use a Newtonian amplitude
function A(f) = f−7/6 [we set α = 0], and we maximize over the parameters ψ0 and ψ3/2 (which is
equivalent to assuming perfect phasing synchronization).

range of fcut that should be taken at each point (ψ0, ψ3/2) within the dashed contour of Fig. 4.15. We

trace out four subregions I, II, III, IV, such that the mass lines of each subregion have approximately

the same values of fendmin; we then use these minimum ending frequencies to set a lower limit for

the values of fcut required in each subregion: fcutmin(I) = 143, fcutmin(II) = 196, fcutmin(III) = 268,

fcutmin(IV) = 370. The maximum fcut is effectively set by the detector noise curve, which limits

the highest frequency at which signal can be still accumulated.

Moving on to the last parameter, α, we note that it is only meaningful to have 0 ≤ αf
2/3
cut ≤ 1,

so that Aeff(f) can become smaller than f−7/6 at high frequencies, but cannot become negative for

f < fcut. Indeed, the optimized values found for α in Table 4.15 seem to follow this rule, except for

a few slight violations that are probably due to numerical error.

4.6.3 Construction of the detection templates bank: parameter density

At this stage, we have completed the specification of the region in the (ψ0, ψ3/2, fcut, α) parameter

space where we shall lay down our bank of templates. We expect that the FF for the projection

of the true physical signals (emitted by nonspinningBBHs with M = 10–40M�) onto this template

bank should be very good. We now wish to evaluate the total number of templates N needed to

achieve a certain MM.

We shall find it convenient to separate the mismatch due to the phasing from the mismatch

due to the frequency cuts by introducing two minimum match parameters MMψ and MMcut, with

MM = MMψ · MMcut � MMψ + MMcut − 1. As mentioned at the beginning of this section, the

correction coefficient α is essentially an extrinsic parameter [see Sec. 4.2.2]: we do not need to

discretize the template bank with respect to α, and there is no corresponding MM parameter.
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We evaluate N in three refinement steps:

1. We start by considering only the phasing parameters, and we compute the parameter area Si

[in the (ψ0, ψ3/2) plane] for each of the subregions i = I, II, III, IV of Fig. 4.15. We then

multiply by the determinant
√
g of the constant metric, and divide by 2(1−MM), according

to Eq. (4.38), to get

N =
∑
i

Si
√
g

2(1 − MMψ)
. (4.123)

This expression is for the moment only formal, because we cannot compute
√
g without con-

sidering the amplitude parameters α and fcut.

2. Next, we include the effect of fcut. In the previous section, we have set fmin cut for each of

the subregions by considering the range swept by fend along the mass lines. Recalling our

discussion of N cut
mass line, we approximate the number of distinct values of fcut that we need to

include for each parameter pair (ψ0, ψ3/2) as

ncut
i (ψ0, ψ3/2, α) = 1 +

log
〈
h(ψ0, ψ3/2, α, fmin cut), h(ψ0, ψ3/2, α, no cut)

〉
log MMcut

. (4.124)

For α in the physical range 0 ≤ α ≤ f
−2/3
cut this match is minimized for α = 0, so this is the

value that we use to evaluate the ncut
i ’s.

3. The final step is to include the effect of α and fcut on the computation of
√
g. For simplicity,

we shoot for an upper limit by maximizing
√
g with respect to α. [Because α is essentially an

extrinsic parameter, we do not multiply N by the number of its discrete values: the matches

are automatically maximized on the continuous range 0 ≤ α ≤ f
−2/3
cut .] Our final estimate for

the total number of templates is

N =
∑
i

Sin
cut
i maxα,fcut [

√
g]

2(1 − MMψ)
. (4.125)

We have evaluated this N numerically. We find that the contributions to the total number of

templates from the four subregions, for MM = 0.96 (taking MMψ = MMcut = 0.98), are N (I) �
6, 140, N (II) � 1, 680, N (III) � 630, N (IV) � 1, 290, for a total of N = 9, 740. This number scales

approximately as [0.04/(1−MM)]2. Notice that subregion I, which contains all the BBHs with total

mass above 25M�, requires by far the largest number of templates. This is mostly because these

waveforms end in the LIGO band, and many values of fcut are needed to match different ending

frequencies.

Remember that the optimal signal-to-noise ratio ρ for filtering the true GW signals by a template

bank is approximately degraded (in the worst case) by the factor MMT = FF + MM − 1. While
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MM depends on the geometry of the template bank, we can only guess at the fitting factor FF for

the projection of the true signal onto the template space. In this section we have seen that all PN

models can be projected onto the detection frequency-domain templates with a good FF: for a vast

majority of the waveforms FF � 0.96 (and the few exceptions can be explained). It is therefore

reasonable to hope that the FF for the true GW signals is ∼ 0.96, so the total degradation from the

optimal ρ will be MMT � 0.92, corresponding to a loss of � 22% in event rate. This number can be

improved by scaling up the number of templates, but of course the actual FF represents an upper

limit for MMT. For instance, about 39,000 templates should get us MMT � 0.94, corresponding to

a loss of � 17% in event rate.

4.6.4 Parameter estimation with the detection templates

Although our family of detection templates was built for the main purpose of detecting BBHs, we

can still use it (once a detection is made) to extract partial information about the BH masses. It

is obvious from Fig. 4.15 that the masses cannot in general be determined unambiguously from the

best-match parameters [i.e., the projection of the true waveform onto the (ψ0, ψ3/2) plane], because

the images of different PN models in the plane have overlaps. Therefore different PN models will

have different ideas, as it were, about the true masses. Another way of saying this is that the mass

lines can cross.

However, it still seems possible to extract at least one mass parameter, the chirp mass M =

Mη3/5, with some accuracy. Since the phasing is dominated by the term ψ0f
−5/3 at low frequencies,

we can use the leading Newtonian term ψN(f) = 3
128 (πMf)−5/3 obtained for a PN expanded

adiabatic model in the stationary-phase approximation to infer

ψ0 ∼ 3
128

(
1
πM
)5/3

=⇒ Mapprox =
1
π

(
3

128ψ0

)3/5

. (4.126)

If this correspondence was exact, the mass lines in Fig. 4.15 would all be vertical. They are not, so

this estimation has an error that gets larger for smaller ψ0 (i.e., for binaries with higher masses).

In Table 4.11 we show the range of chirp-mass estimates obtained from Eq. 4.126 for the values

of ψ0 at the projections of the PN models in Fig. 4.15, together with their percentage error ε ≡
(Mapprox

max −Mapprox
min )/M. In this table, Mmax and Mmin correspond to the endpoints of the mass

lines. If we take into account the extension of the mass lines by a factor of two in the detection

template bank, we should double the ε of the table.

It seems quite possible that a more detailed investigations of the geometry of the projections into

the detection template space (and especially of the mass lines) could produce better algorithms to

estimate binary parameters.
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m1 m2 M Mapprox
min Mapprox

max ε%
5 5 4.35 4.15 4.27 2.7

10 5 6.08 5.74 5.99 4.1
15 5 7.33 6.84 7.30 6.2
20 5 8.33 7.55 8.34 9.4
10 10 8.71 8.14 8.72 6.7
15 10 10.62 9.77 11.26 14.0
20 10 12.17 11.04 12.57 12.5
15 15 13.06 11.68 15.49 29.2
20 15 15.05 13.18 17.79 30.6
20 20 17.41 14.92 21.40 37.2

Table 4.11: Estimation of the chirp masses M from the projections of the PN target models onto
the Fourier-domain detection template space. The numbers in the third column (labeled “M”) give
the values of the chirp mass corresponding to the BH masses (m1,m2) to their right; the numbers in
the fourth and fifth columns give the range of estimates obtained from Eq. (4.126) for the values of
ψ0 at the projections of the target models shown in Fig. 4.15. The last column shows the percentage
error ε ≡ (Mapprox

max −Mapprox
min )/M.

4.7 Performance of the time-domain detection templates

Another possibility is to adopt one or more of the physical models discussed in Secs. 4.4 as the

detection template bank used for detection. Under the general hypothesis that underlies this work

(that is, that the target models span the region in signal space where the true physical signals

reside), if we find that one of the target models matches all the others very well, we can use it as

the detection model; and we can estimate its effectualness in matching the true physical signal from

its effectualness in matching all the other models.

As shown in Table 4.14 and discussed in Sec. 4.5, the fitting factors FF for the projection of

the PN models onto each other are quite low (at least for PN order n ≤ 5/2); in other words, the

models appear to be quite distant in signal space. This conclusion is overturned, however, if we

let the dimensionless mass ratio η move beyond its physical range 0 ≤ η ≤ 1/4. For instance, the

P(2, 5/2) and EP(3, 7/2, 0) models can be extended formally to the range 0 ≤ η ≤ 1. Beyond those

ranges, either the equations (of energy-balance, or motion) become singular, or the determination of

the MECO or light ring (the evolutionary endpoint of the inspiral for the P(2, 5/2) model and the

EP(3, 7/2, 0) model, respectively) fails.

When the models are extended to 0 < η ≤ 1, they appear to lie much closer to each other in

signal space. In particular, the P(2, 5/2) and EP(3, 7/2, 0) models are able to match all the other

models, with minmax FF > 0.95, for almost all the masses in our range, and in any case with much

improved FF for most masses; see Tables 4.16 and 4.17. Apparently, part of the effect of the different

resummation and approximation schemes is just to modulate the strength of the PN effects in a way

that can be simulated by changing η to nonphysical values in any one model. This fact can be

appreciated by looking at Figs. 4.16 and 4.17, which show the projection of several models onto the
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P(2, 5/2) and EP(3, 7/2, 0) detection template spaces, respectively. For instance, in comparison with

T(2, 5/2), the model P(2, 5/2) seems to underestimate systematically the effect of η, so a satisfactory

FF for ηT = 0.25 can be obtained only if we let ηP > 0.25 (quite consistently, in the comparison of

Table 4.14, where η was confined to its physical range, T (2, 5/2) could match P(2, 5/2) effectively,

but the reverse was not true).

The other (and perhaps crucial) effect of raising η is to change the location of the MECO for the

P-approximant model (or the light ring, for the EP model), where orbital evolution ends. (Remember

that one of the differences between the Padé and the EOB models is that the latter includes a plunge

part between the ISCO and the light ring.) More specifically, for P(2, 5/2) [EP(3, 7/2, 0)] the position

of the MECO [light ring] is pushed to smaller radii as η is increased. This effect can increase the FF

for target models that have very different ending frequencies from those of P(2, 5/2) and EP(3, 7/2)

at comparable η’s.

Because for the EP model the frequency at the light ring is already quite high, we cannot simply

operate on η to improve the match between the EP model and other models that end at much

lower frequencies [see the values of minmax matches in Table 4.17]. Thus, we shall enhance the

effectualness of EP by adding an arbitrary cut parameter that modifies the radius r (usually the

light-ring radius) at which we stop the integration of the Hamilton equations (4.97)–(4.98); the effect

is to modify the final instantaneous GW frequency of the waveform. This is therefore a time-domain

cut, as opposed to the frequency-domain cuts of the frequency-domain detection templates examined

in the previous section.

We can then compute the FF by searching over fcut in addition to M and η, and we shall

correspondingly account for the required number of distinct fcut when we estimate the number

of templates required to give a certain MMtot. Even so, if we are unsure whether we can model

successfully a given source over a certain range of frequencies that falls within LIGO range (as it is

the case for the heavy BBHs with MECOs at frequencies < 200 Hz), the correct way to estimate

the optimal ρ (and therefore the expected detection rate) is to include only the signal power in the

frequency range that we know well.

The best matches shown in Tables 4.16 and 4.17, and in Figs. 4.16 and 4.17 were obtained by

searching over the target model parameter space with the simplicial amoeba algorithm [57]. We

found (empirically) that it was expedient to conduct the searches on the parameters β ≡ Mη2/5

and η rather than on M and η. This is because iso-match surfaces tend to look like thin ellipses

clustered around the best match parameter pair, with principal axes along the β and η directions. As

shown in Table 4.16, the values of the maxmax and minmax FFs are very close to each other for the

P(2, 5/2) model; the same is true for the EP(3, 7/2) model (so in Table 4.17 we do not show both).

For EP(3, 7/2), the search over the three parameters (β, η, fcut) was performed as a refinement step

after a first search on (β, η).
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Figure 4.16: Projection of PN waveforms onto the P(2, 5/2) detection template space. Dots are
shown for the same BBH masses of Table 4.15, for PN models T(2, 5/2), P(2, 5/2), ET(2, 5/2),
and EP(2, 5/2) in the left panel, and for PN models T(3, 7/2,+2), P(3, 7/2,+2), ET(3, 7/2,+2),
EP(3, 7/2,+2), HT(3, 7/2,+2), and HP(3, 7/2,+2) in the right. The dots for θ̂ = −2 are only
slightly displaced, and they are not shown. The thin solid lines show the mass lines (introduced in
Sec. 4.6.2), while the dashed and dotted lines show the contours of the projections of selected PN
models.

We have evaluated the Owen metric [27] gij (see Sec. 4.2) with respect to the parameters (β, η) for

the models P(2, 5/2) and EP(3, 7/2, 0) (while evaluating gij , the EP waveforms were not cut). The

metric components at the point (β0, η0) were obtained by first determining the ranges (βmin, βmax),

(ηmin, ηmax) for which

〈u(β0, η0), u(βmin, η0)〉 = 〈u(β0, η0), u(βmax, η0)〉 = 1 − 0.05 (4.127)

〈u(β0, η0), u(β0, ηmin)〉 = 〈u(β0, η0), u(β0, ηmax)〉 = 1 − 0.05; (4.128)

then a quadratic form was least-squares–fit to 16 values of the match along the ellipse Γ1 with axes

given by (βmin, βmax) and (ηmin, ηmax). The first quadratic form was used only to determine the

principal axes of two further ellipses Γ2 and Γ3, at projected matches of 1 − 0.025 and 1 − 0.0125.

Another quadratic form (giving the final result for the metric) was then fit at the same time to 16

points along Γ2 and to 16 points along Γ3, but the two ellipses were given different fitting weights to

cancel the quartic correction terms in the Taylor expansion of the match around (β0, η0) [the cubic

terms were canceled automatically by taking symmetric points along the ellipses]. The rms error of

the fit was in all cases very good, establishing that the quadratic approximation held in the close

vicinity (matches ∼ 0.95) of each point.

The resulting
√|g| for P(2, 5/2) and EP(3, 7/2, 0) is shown in Fig. 4.18. It is evident that most

of the mismatch volume is concentrated near the smallest β’s and η’s in parameter space. This is

encouraging, because it means that the extension of the detection template family to high masses

and high η’s (necessary, as we have seen, to match several target models with very high FF) will be
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Figure 4.17: Projection of PN waveforms onto the EP(3, 7/2) detection template space. This projec-
tion includes the effect of the frequency cut. Dots are shown for the same BBH masses of Table 4.15,
and for PN models T(2, 5/2), P(2, 5/2), ET(2, 5/2), and EP(2, 5/2) in the left panel, and for PN mod-
els T(3, 7/2,+2), P(3, 7/2,+2), ET(3, 7/2,+2), EP(3, 7/2,+2), HT(3, 7/2,+2), and HP(3, 7/2,+2)
in the right panel. The dots for θ̂ = −2 are only slightly displaced, and they are not shown. The
thin solid lines show the mass lines (introduced in Sec. 4.6.2), while the dashed and dotted lines
show the contours of the projections of selected PN models.

relatively cheap with respect to the size of the template bank. With the
√|g|’s we then computed

the number of P and EP templates necessary to cover the parameter range β : (4, 24), η : (0.15, 1.00),

which spans comfortably all the projected images of the target spaces onto the P and EP template

spaces. We obtained

NP � 6520
(

0.01
1 − MM

)
, NE � 9750

(
0.01

1 − MM

)
, (4.129)

where MM is the required minimum match. By comparison, these numbers are reduced to respec-

tively 2460 and 3180 is we restrict η to the physical range.

The number NE does not include the effect of multiple ending frequencies (cuts). We estimate

the number of distinct fcut needed for each β by an argument similar to the one used for the Fourier-

domain detection templates (see Sec. 4.6). The resulting number is NEc � 32, 000 for MM = 0.98,

which is comparable to the result for the detection Fourier-domain templates.

If we assume that the distance between the time-domain templates and the target models is

representative of the distance to the true physical signal, we can guess that FF � 0.95 for P and

FF � 0.97 for EP with cuts. Under these hypotheses, 6,500 P templates can buy us a (worst-case)

MMT � 0.94, corresponding to a loss in event rate of ∼ 17%. For 32,000 EP templates, we get

MMT � 0.95, corresponding to a loss in event rate of ∼ 14%.
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EP(3, 7/2, 0) models [right panel]. The determinant

√|g| is shown as a function of η and β = Mη2/5.

4.8 Summary

This chapter deals with the problem of detecting GWs from the most promising sources for ground-

based GW interferometers: comparable-mass BBHs with total mass M = 10–40M� moving on

quasi-circular orbits. The detection of these sources poses a delicate problem, because their transition

from the adiabatic phase to the plunge, at least in the nonspinning case, is expected to occur in the

LIGO and VIRGO frequency bands. Of course, the true GW signals from these inspirals should be

obtained from exact solutions of the Einstein equations for two bodies of comparable mass. However,

the theoretical templates used to search for these signals will be, at best, finite-order approximations

to the exact solutions, usually derived in the PN formalism. Because the perturbative PN approach

begins to fail during the final stages of the inspiral, when strong curvature and nonlinear effects

can no longer be neglected, various PN resummation methods have been introduced [14, 15, 16] to

improve the convergence of the PN series.

In the first part of this chapter [see Sec. 4.3, 4.4 and 4.5], we studied and compared in detail

all the PN models of the relativistic two-body dynamics currently available, including PN Taylor-

expanded and resummed models both in the adiabatic approximation and in the nonadiabatic case.

We noticed the following features. At least for PN orders n ≤ 5/2, the target models T, P, and E have

low cross matches. For example, for almost all the masses in our range, we found maxmaxFF ≤ 0.9;

the matches were much better only for P against E (and viceversa). However, at 3PN order we

found much higher matches between T, P, and E, and also with the nonadiabatic model H. These

results make sense because at 3PN order the various approximations to the binding energy and the

flux seem to be much closer to each other than at lower orders. This “convergence” of the different

analytical approaches, which at 3PN order are also much closer to some examples of numerical
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quasi-equilibrium BBH models [25], was recently pointed out in Refs. [51, 60]. On the other hand,

the extraction of BBH parameters from a true measured signal, if done using the 3PN models, would

still give a range of rather different estimates.

In addition, by studying the frequency-domain amplitude of the GW signals that end inside the

LIGO frequency band [see Figs. 4.4, 4.8, 4.10, 4.9], we understood that if high matches are required,

it is crucial to reproduce their deviations from the Newtonian amplitude evolution, f−7/6 (on the

contrary, the Newtonian formula seems relatively adequate to model the PN amplitude for GW

frequencies below the instantaneous GW frequency at the endpoint of orbital evolution).

Finally, the introduction of the H model provided another example of two-body nonadiabatic

dynamics, quite different from the E models. In the H models, the conservative dynamics does

not have an ISCO. As a consequence, the transition to the plunge is due to the secular radiation-

reaction effects, and it is pushed to much higher frequencies. This means that, for the H models, the

GW signals for BBHs of total mass M = 10–40M� end outside the LIGO frequency band, and the

frequency-domain amplitude does not deviate much from the Newtonian result, at least until very

high frequencies [see Fig. 4.9].

In the second part of the chapter [Secs. 4.6, 4.7] we pursued the following strategy. We assumed

that the target models spanned a region in signal space that (almost) included the true GW signal.

We were then able to provide a few detection template banks (either chosen among the time-domain

target models, or built directly from polynomial amplitude and phasings in the frequency domain)

that approximate quite well all the targets [FF ≥ 0.95 for almost all the masses in our range, with

much better FFs for most masses]. We speculate that the effectualness of the detection model in

approximating the targets is indicative of its effectualness in approximating the true signals.

The Fourier-domain detection template bank, discussed in Sec. 4.6, is simple and versatile. It

uses a PN polynomial structure for the frequency-domain amplitude and phasing, but it does not

constrain the coefficients to the PN functional dependencies on the physical parameters. In this

sense this bank follows the basic idea that underlies the fast chirp transform [58]. However, because

for the masses that we consider the GW signal can end within the LIGO frequency band, we were

forced to modify the Newtonian-order formula for the amplitude, introducing a cutoff frequency

and a parameter to modify the shape of the amplitude curve (the parameter α). A theoretical

explanation for the good performance of this bank (especially the fact that it can cover all the target

models with only two arbitrary parameters in the phasing, and one arbitrary parameter to cut the

signal) might be found in the results of Ref. [59].

We showed that our Fourier-domain detection template space has a FF higher than 0.97 for the

T, P and E models, and � 0.96 for most of the HT, HP models; we then speculate that it will match

true BBH waveforms with FF ∼ 0.96. We have computed the number of templates required to give

MM � 0.96 (about 104). The total MMT should be larger than FF ·MM ∼ 0.92, which corresponds
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to a loss of event rate of 1 − MM3
T ≈ 22%. This performance could be improved at the price of

introducing a larger number of templates, with the rough scaling law of N = 104[0.04/(0.96−MM)]2.

The time-domain detection template banks, discussed in Sec. 4.7, followed a slightly different

philosophy. The idea in this case was to provide a template bank that, for some choices of the

parameters, could coincide with one of the approximate two-body models. Quite interestingly,

this can be achieved by relaxing the physical hypothesis that 0 ≤ η ≤ 0.25. However, the good

performances of these banks are less systematic, and harder to generalize than the performance of

the Fourier-domain detection bank. The detection template banks based on the extension of the

P(2, 5/2) and EP(3, 7/2) to nonphysical values of η were shown to have FF � 0.95 and � 0.97 for

all the PN target models, and considerably higher for most models and masses. We have computed

the number of P templates needed to obtain a MM = 0.99 (about 6,500) and of EP templates to

obtain a MM = 0.98 (about 32,000). The expected total MMT is then � 0.94 for the P model, and

� 0.95 for the EP model, corresponding to losses in event rate of � 17% and � 14%. The MMs

scale roughly as [0.01/(1 − MM)] for P and [0.02/(1 − MM)]2 for EP (because of the additional

frequency-cut parameter).

When numerical relativity provides the first good examples of waveforms for the last stages of

BBH inspiral and plunge, we will be able to sharpen our indications further. Last, we note that the

comparison between the PN expanded and resummed methods and the quasi-equilibrium approach

of Ref. [25] (recently discussed in Refs. [51, 60]), could also be used to improve our suggestions.
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FF for projection onto the Fourier-domain detection models

PN model fend mn ψ0 ψ3/2 αf
2/3
cut fcut fend mn ψ0 ψ3/2 αf

2/3
cut fcut

(20 + 20)M� 167.2 0.970 18291. 158.09 0.342 204.0 (20 + 5)M� 289.8 0.986 71171. −170.01 0.155 322.8
(20 + 15)M� 193.2 0.974 23965. 142.93 0.038 230.6 (10 + 10)M� 336.0 0.982 66410. −16.43 0.009 359.7

T(2, 5/2) (15 + 15)M� 222.9 0.977 31046. 134.05 0.008 261.1 (15 + 5)M� 355.3 0.982 88800. −142.12 0.507 774.2
(20 + 10)M� 228.6 0.979 36081. 55.66 0.068 266.7 (10 + 5)M� 458.2 0.983 123370. −173.74 0.831 779.0
(15 + 10)M� 270.3 0.975 46422. 34.15 0.566 580.5 (5 + 5)M� 674.0 0.993 216750. −180.89 0.000 675.7
(20 + 20)M� 202.2 0.982 24740.−550.57 0.987 249.4 (20 + 5)M� 268.0 0.985 80175.−1128.00 0.937 302.3
(20 + 15)M� 228.0 0.984 31815.−635.05 0.940 239.7 (10 + 10)M� 404.8 0.988 73612. −697.27 1.022 514.6

T(3, 7/2, +2) (15 + 15)M� 269.6 0.987 38935.−617.73 0.995 314.0 (15 + 5)M� 352.0 0.988 97603.−1001.20 0.878 375.9
(20 + 10)M� 251.8 0.985 43612.−713.36 1.093 342.6 (10 + 5)M� 504.3 0.989 131080. −893.94 0.880 584.8
(15 + 10)M� 315.4 0.986 53770.−682.52 0.887 318.3 (5 + 5)M� 809.7 0.986 224390. −826.75 0.817 927.6
(20 + 20)M� 202.4 0.979 25238.−628.12 1.001 249.9 (20 + 5)M� 268.2 0.987 80459.−1194.50 0.945 300.8
(20 + 15)M� 227.6 0.985 31698.−677.89 0.982 258.7 (10 + 10)M� 404.3 0.989 74084. −782.54 1.014 496.1

T(3, 7/2, −2) (15 + 15)M� 269.9 0.987 39544.−706.50 0.964 287.4 (15 + 5)M� 352.4 0.989 98187.−1091.00 0.836 352.4
(20 + 10)M� 252.4 0.985 43869.−778.12 0.941 253.5 (10 + 5)M� 504.2 0.988 131480. −972.32 0.908 515.5
(15 + 10)M� 315.1 0.988 54129.−759.15 1.038 386.7 (5 + 5)M� 808.5 0.982 226160. −972.81 0.721 808.5
(20 + 20)M� 143.0 0.972 26976.−745.63 0.987 205.0 (20 + 5)M� 207.9 0.978 81733.−1266.10 0.843 209.2
(20 + 15)M� 162.5 0.976 33158.−769.35 0.919 191.4 (10 + 10)M� 286.0 0.983 73895. −746.01 0.814 293.4

P(2, 5/2) (15 + 15)M� 190.6 0.980 40579.−759.45 0.976 232.9 (15 + 5)M� 267.5 0.982 98602.−1090.80 0.794 270.2
(20 + 10)M� 185.1 0.975 44531.−803.19 0.900 195.1 (10 + 5)M� 370.1 0.983 132430. −988.92 0.700 370.1
(15 + 10)M� 226.3 0.981 54598.−764.93 0.847 226.3 (5 + 5)M� 571.9 0.983 225180. −884.21 0.607 571.9
(20 + 20)M� 143.0 0.979 25363.−563.91 1.016 240.1 (20 + 5)M� 207.9 0.983 79257.−1051.20 0.764 219.0
(20 + 15)M� 162.5 0.982 31357.−578.36 0.962 233.4 (10 + 10)M� 286.0 0.987 72966. −635.31 0.633 300.8

P(3, 7/2, +2) (15 + 15)M� 190.6 0.982 38639.−567.75 0.886 243.3 (15 + 5)M� 267.5 0.989 96539. −915.69 0.638 269.8
(20 + 10)M� 185.1 0.981 43270.−662.60 0.915 245.4 (10 + 5)M� 370.1 0.992 130120. −816.32 0.545 371.0
(15 + 10)M� 226.3 0.984 52889.−601.36 0.801 263.2 (5 + 5)M� 571.9 0.989 223660. −770.64 0.593 733.9
(20 + 20)M� 143.0 0.979 25682.−602.71 1.000 235.1 (20 + 5)M� 207.9 0.983 79776.−1104.70 0.776 223.8
(20 + 15)M� 162.5 0.983 31516.−614.40 1.019 266.1 (10 + 10)M� 286.0 0.989 72873. −655.62 0.642 288.5

P(3, 7/2, −2) (15 + 15)M� 190.6 0.983 38789.−606.93 0.983 275.0 (15 + 5)M� 267.5 0.988 96652. −947.76 0.683 267.5
(20 + 10)M� 185.1 0.982 43576.−704.21 0.987 269.3 (10 + 5)M� 370.1 0.990 130470. −867.71 0.612 388.8
(15 + 10)M� 226.3 0.984 53278.−652.03 0.732 238.8 (5 + 5)M� 571.9 0.989 224240. −828.78 0.490 577.4
(20 + 20)M� 231.0 0.992 22501.−265.89 0.909 436.6 (20 + 5)M� 359.4 0.995 79626. −884.06 0.946 642.0
(20 + 15)M� 263.5 0.992 28787.−308.42 0.938 516.6 (10 + 10)M� 462.0 0.995 71558. −428.56 0.674 757.1

ET(2, 5/2) (15 + 15)M� 308.0 0.993 36279.−318.01 0.740 540.8 (15 + 5)M� 452.7 0.994 96651. −748.31 0.764 681.7
(20 + 10)M� 305.1 0.993 41355.−424.18 0.788 525.5 (10 + 5)M� 610.1 0.993 129150. −607.32 0.641 793.7
(15 + 10)M� 368.3 0.994 51719.−412.34 0.849 609.2 (5 + 5)M� 924.0 0.991 221900. −533.53 0.369 924.2
(20 + 20)M� 214.5 0.991 22070.−355.33 0.918 341.3 (20 + 5)M� 352.6 0.993 78755.−1076.90 0.738 389.2
(20 + 15)M� 244.3 0.992 28411.−416.70 0.974 426.4 (10 + 10)M� 428.7 0.995 72334. −639.59 0.758 659.6

ET(3, 7/2, +2) (15 + 15)M� 285.9 0.992 36224.−454.79 0.939 540.1 (15 + 5)M� 434.4 0.994 97025. −993.73 0.869 742.2
(20 + 10)M� 285.8 0.993 40883.−553.27 1.117 649.0 (10 + 5)M� 577.8 0.994 130850. −899.89 0.606 830.2
(15 + 10)M� 342.3 0.993 51551.−565.33 0.924 625.0 (5 + 5)M� 847.7 0.986 225160. −875.85 0.557 848.9
(20 + 20)M� 204.2 0.991 21968.−393.93 0.953 351.6 (20 + 5)M� 348.4 0.992 78490.−1112.40 0.739 379.4
(20 + 15)M� 236.8 0.992 28226.−448.43 0.995 412.3 (10 + 10)M� 409.6 0.994 72835. −720.60 0.617 468.4

ET(3, 7/2, −2) (15 + 15)M� 272.2 0.993 36311.−506.61 1.061 535.3 (15 + 5)M� 431.2 0.993 97319.−1064.30 1.024 807.2
(20 + 10)M� 277.4 0.992 40889.−599.37 0.996 519.8 (10 + 5)M� 559.6 0.995 131780.−1004.80 0.784 783.4
(15 + 10)M� 329.1 0.992 51582.−618.21 0.956 622.1 (5 + 5)M� 818.9 0.983 226630.−1005.30 0.571 818.9
(20 + 20)M� 218.1 0.991 21159.−345.94 0.823 410.5 (20 + 5)M� 345.8 0.991 79743.−1178.70 0.713 358.6
(20 + 15)M� 249.1 0.992 27741.−423.65 0.995 567.1 (10 + 10)M� 436.2 0.993 72886. −715.34 0.604 514.6

EP(2, 5/2) (15 + 15)M� 290.8 0.990 35543.−466.47 1.006 712.0 (15 + 5)M� 433.1 0.993 98112.−1097.80 0.918 708.3
(20 + 10)M� 289.8 0.990 40526.−582.83 0.682 404.5 (10 + 5)M� 579.6 0.993 132360.−1019.30 0.780 906.5
(15 + 10)M� 348.5 0.990 51692.−620.53 0.977 770.9 (5 + 5)M� 872.5 0.979 227160.−1008.80 0.589 875.8
(20 + 20)M� 219.5 0.991 22114.−334.89 1.005 403.0 (20 + 5)M� 358.0 0.994 78307.−1024.50 0.764 403.8
(20 + 15)M� 250.0 0.991 28406.−391.73 0.995 453.7 (10 + 10)M� 439.1 0.995 71669. −578.87 0.721 663.4

EP(3, 7/2, +2) (15 + 15)M� 292.6 0.991 35794.−406.91 0.904 506.6 (15 + 5)M� 446.4 0.995 96288. −930.06 0.908 720.3
(20 + 10)M� 291.6 0.992 40343.−498.71 0.981 602.9 (10 + 5)M� 585.1 0.995 130140. −839.47 0.674 867.3
(15 + 10)M� 353.7 0.993 51234.−521.92 0.946 678.8 (5 + 5)M� 870.7 0.989 224200. −812.19 0.538 870.7
(20 + 20)M� 214.8 0.991 21821.−336.53 0.955 368.0 (20 + 5)M� 353.9 0.993 78195.−1040.20 0.731 405.0
(20 + 15)M� 244.8 0.992 28059.−393.32 0.957 430.2 (10 + 10)M� 433.5 0.994 71738. −611.36 0.763 653.2

EP(3, 7/2, −2) (15 + 15)M� 286.4 0.992 35969.−438.72 0.963 542.8 (15 + 5)M� 443.8 0.994 96309. −954.89 0.879 751.4
(20 + 10)M� 288.6 0.993 40432.−525.35 1.101 652.0 (10 + 5)M� 576.7 0.995 130750. −899.09 0.702 837.9
(15 + 10)M� 346.9 0.993 51238.−548.55 1.028 708.2 (5 + 5)M� 866.6 0.988 225240. −891.94 0.491 866.6
(20 + 20)M� 933.1 0.976 16506. 93.72 0.687 941.3 (20 + 5)M� 196.2 0.983 83749.−1440.80 0.952 266.5
(20 + 15)M� 1096.7 0.971 21255. 72.04 0.468 1000.0 (10 + 10)M� 1866.3 0.962 67097. −284.34 0.660 1000.0

HT(3, 7/2, +2) (15 + 15)M� 1244.2 0.966 28096. 66.27 0.077 1000.0 (15 + 5)M� 303.6 0.992 98509.−1077.90 0.795 386.8
(20 + 10)M� 1525.8 0.979 36560.−263.16 0.709 1000.0 (10 + 5)M� 3051.7 0.990 128490. −739.94 0.261 1000.0
(15 + 10)M� 1581.0 0.963 45686.−176.01 0.345 1000.0 (5 + 5)M� 3732.3 0.991 222040. −682.30 0.416 1000.0
(20 + 20)M� 811.8 0.982 17588. −20.82 0.674 893.6 (20 + 5)M� 196.0 0.986 83791.−1489.40 0.997 299.9
(20 + 15)M� 953.4 0.979 23087. −62.71 0.734 997.4 (10 + 10)M� 1623.6 0.970 68129. −400.15 0.724 1000.0

HT(3, 7/2, −2) (15 + 15)M� 1082.4 0.971 29649. −60.31 0.425 1000.0 (15 + 5)M� 303.2 0.992 98851.−1149.70 0.995 506.7
(20 + 10)M� 1319.8 0.979 36955.−334.44 0.682 1000.0 (10 + 5)M� 2639.6 0.990 130070. −877.29 0.522 1000.0
(15 + 10)M� 1373.4 0.967 46121.−259.84 0.421 1000.0 (5 + 5)M� 3247.1 0.992 223160. −799.64 0.326 1000.0
(20 + 20)M� 530.7 0.971 14787. 231.60 0.008 537.2 (20 + 5)M� 196.3 0.981 83668.−1410.20 1.024 298.2
(20 + 15)M� 599.1 0.966 20115. 187.45 0.003 1000.0 (10 + 10)M� 1061.3 0.946 66058. −202.69 0.680 1000.0

HP(3, 7/2, +2) (15 + 15)M� 707.6 0.956 25329. 230.42 0.000 707.6 (15 + 5)M� 304.1 0.991 98024.−1024.70 0.650 315.8
(20 + 10)M� 662.6 0.972 35906.−198.92 0.199 906.3 (10 + 5)M� 1325.3 0.989 127830. −681.29 0.595 1000.0
(15 + 10)M� 829.1 0.944 43130. −36.85 0.087 989.1 (5 + 5)M� 2122.7 0.989 221160. −620.76 0.413 1000.0
(20 + 20)M� 507.2 0.975 15991. 133.89 0.106 511.1 (20 + 5)M� 196.3 0.983 83872.−1444.00 0.995 298.1
(20 + 15)M� 582.0 0.971 21098. 101.78 0.219 905.8 (10 + 10)M� 1014.5 0.957 67057. −282.94 0.803 1000.0

HP(3, 7/2, −2) (15 + 15)M� 676.3 0.961 27047. 125.95 0.000 1000.0 (15 + 5)M� 303.8 0.991 97891.−1043.20 0.668 319.4
(20 + 10)M� 658.5 0.977 36688.−263.86 0.643 1000.0 (10 + 5)M� 1317.0 0.991 128410. −739.77 0.690 1000.0
(15 + 10)M� 812.8 0.955 44222.−112.75 0.285 999.8 (5 + 5)M� 2029.0 0.990 221590. −673.59 0.402 1000.0

Table 4.15: Fitting factors for the projection of the target models (in the rows) onto the
(ψ0, ψ3/2, α, fcut) Fourier-domain detection template family. For ten choices of BBH masses, this
table shows the minmax matches between the target models and the Fourier-domain search model,
maximized over the intrinsic parameters ψ0, ψ3/2, and α, fcut, and over the extrinsic parameter α.
For each intersection, the six numbers shown report the ending frequency fend (defined in Sec. 4.6.2)
of the PN model for the BBH masses quoted, the minmax FF mn, and the search parameters at
which the maximum is attained. Notice that α ranges between 0 and f−2/3

cut , and that fcut > fend.
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FF for projection onto P(2,5/2), for 0 < η < 1

mm M η mn M η mm M η mn M η

(20+20)M� 0.970 19.35 0.91 0.952 20.79 0.77 (20+5)M� 0.989 12.61 0.54 0.985 12.27 0.57
(20+15)M� 0.973 16.60 0.94 0.957 17.53 0.84 (10+10)M� 0.987 10.26 0.84 0.982 9.88 0.90

T(2,5/2) (15+15)M� 0.978 14.25 0.97 0.963 15.00 0.88 (15+5)M� 0.990 10.23 0.62 0.987 9.90 0.66
(20+10)M� 0.976 15.41 0.73 0.971 14.84 0.79 (10+5)M� 0.987 8.49 0.61 0.984 8.29 0.64
(15+10)M� 0.981 12.81 0.80 0.940 14.92 0.59 (5+5)M� 0.986 6.55 0.52 0.985 6.51 0.53
(20+20)M� 0.997 37.03 0.31 0.994 37.01 0.31 (20+5)M� 0.996 23.67 0.18 0.990 23.28 0.19
(20+15)M� 0.997 32.60 0.29 0.995 32.47 0.30 (10+10)M� 0.998 19.70 0.26 0.993 19.03 0.28

T(3,7/2,−2) (15+15)M� 0.998 28.89 0.28 0.994 28.07 0.30 (15+5)M� 0.997 19.20 0.21 0.993 18.76 0.22
(20+10)M� 0.997 28.69 0.25 0.995 27.99 0.26 (10+5)M� 0.997 14.92 0.23 0.993 14.63 0.24
(15+10)M� 0.998 24.35 0.26 0.994 23.78 0.27 (5+5)M� 0.998 10.20 0.24 0.997 10.27 0.24
(20+20)M� 0.999 36.20 0.31 0.995 35.63 0.32 (20+5)M� 0.997 22.95 0.19 0.993 22.52 0.20
(20+15)M� 0.999 31.39 0.31 0.996 31.09 0.32 (10+10)M� 0.999 18.74 0.28 0.995 18.18 0.30

T(3,7/2,+2) (15+15)M� 0.999 27.63 0.29 0.997 27.02 0.31 (15+5)M� 0.997 18.61 0.22 0.995 18.15 0.23
(20+10)M� 0.999 27.42 0.27 0.996 26.85 0.28 (10+5)M� 0.998 14.09 0.25 0.994 13.87 0.26
(15+10)M� 0.998 23.20 0.28 0.996 22.60 0.29 (5+5)M� 0.998 9.57 0.27 0.997 9.70 0.26
(20+20)M� 0.999 35.24 0.33 0.996 35.93 0.32 (20+5)M� 0.999 23.33 0.18 0.998 23.04 0.19
(20+15)M� 1.000 31.72 0.30 0.998 31.59 0.30 (10+10)M� 0.999 18.74 0.28 0.997 18.27 0.30

P(3,7/2,−2) (15+15)M� 0.999 27.19 0.31 0.998 27.28 0.30 (15+5)M� 0.999 18.76 0.21 0.998 18.43 0.22
(20+10)M� 1.000 27.25 0.27 0.998 27.16 0.27 (10+5)M� 0.999 14.20 0.25 0.997 13.94 0.26
(15+10)M� 0.999 23.01 0.28 0.998 22.80 0.29 (5+5)M� 0.999 9.61 0.27 0.996 9.60 0.27
(20+20)M� 1.000 34.70 0.33 0.997 35.41 0.32 (20+5)M� 1.000 23.15 0.18 0.999 22.85 0.19
(20+15)M� 1.000 30.92 0.31 0.998 31.01 0.31 (10+10)M� 0.999 18.08 0.30 0.998 17.79 0.31

P(3,7/2,+2) (15+15)M� 1.000 26.55 0.32 0.998 26.67 0.31 (15+5)M� 1.000 18.38 0.22 0.998 18.12 0.23
(20+10)M� 1.000 26.62 0.28 0.998 26.78 0.28 (10+5)M� 0.999 13.84 0.26 0.998 13.64 0.26
(15+10)M� 0.999 22.49 0.29 0.999 22.26 0.30 (5+5)M� 0.999 9.31 0.28 0.996 9.39 0.28
(20+20)M� 0.994 26.75 0.56 0.989 25.08 0.65 (20+5)M� 0.979 19.86 0.24 0.971 19.36 0.25
(20+15)M� 0.993 24.06 0.51 0.984 22.39 0.60 (10+10)M� 0.989 14.75 0.43 0.983 14.93 0.43

ET(2,5/2) (15+15)M� 0.991 20.84 0.50 0.970 21.85 0.45 (15+5)M� 0.987 15.76 0.29 0.982 15.38 0.30
(20+10)M� 0.987 21.34 0.42 0.969 22.14 0.39 (10+5)M� 0.994 12.01 0.33 0.987 12.22 0.32
(15+10)M� 0.987 17.94 0.44 0.969 17.07 0.49 (5+5)M� 0.997 8.07 0.36 0.995 8.13 0.36
(20+20)M� 0.991 31.35 0.46 0.986 30.21 0.51 (20+5)M� 0.954 22.70 0.20 0.942 23.56 0.18
(20+15)M� 0.988 28.36 0.41 0.977 26.54 0.48 (10+10)M� 0.977 18.69 0.29 0.971 18.03 0.32

ET(3,7/2,−2) (15+15)M� 0.984 25.06 0.38 0.970 23.69 0.44 (15+5)M� 0.972 18.53 0.22 0.964 19.04 0.21
(20+10)M� 0.977 24.74 0.35 0.957 23.71 0.39 (10+5)M� 0.983 15.04 0.22 0.979 14.79 0.23
(15+10)M� 0.973 21.75 0.33 0.961 22.27 0.31 (5+5)M� 0.994 10.35 0.24 0.992 10.37 0.24
(20+20)M� 0.993 30.48 0.47 0.989 29.53 0.51 (20+5)M� 0.957 22.12 0.21 0.946 22.86 0.19
(20+15)M� 0.990 27.27 0.43 0.980 25.71 0.50 (10+10)M� 0.983 16.95 0.35 0.976 17.42 0.33

ET(3,7/2,+2) (15+15)M� 0.986 24.02 0.41 0.972 22.61 0.47 (15+5)M� 0.974 17.91 0.24 0.967 18.51 0.22
(20+10)M� 0.980 24.02 0.36 0.960 22.48 0.42 (10+5)M� 0.984 14.37 0.24 0.981 14.15 0.25
(15+10)M� 0.977 20.84 0.35 0.966 21.38 0.33 (5+5)M� 0.995 9.80 0.26 0.993 9.80 0.26
(20+20)M� 0.988 30.94 0.48 0.977 28.86 0.58 (20+5)M� 0.947 24.19 0.17 0.940 23.71 0.18
(20+15)M� 0.980 27.82 0.43 0.963 25.87 0.52 (10+10)M� 0.975 18.50 0.30 0.964 17.84 0.32

EP(2,5/2) (15+15)M� 0.972 24.49 0.40 0.947 22.93 0.48 (15+5)M� 0.970 18.74 0.22 0.963 19.18 0.21
(20+10)M� 0.964 24.86 0.35 0.937 22.36 0.46 (10+5)M� 0.984 15.10 0.22 0.979 14.80 0.23
(15+10)M� 0.962 23.01 0.29 0.950 21.96 0.32 (5+5)M� 0.995 10.23 0.24 0.993 10.30 0.24
(20+20)M� 0.993 30.21 0.48 0.990 29.04 0.53 (20+5)M� 0.958 22.01 0.21 0.947 22.60 0.20
(20+15)M� 0.991 27.00 0.44 0.982 25.55 0.50 (10+10)M� 0.983 16.75 0.36 0.976 17.27 0.34

EP(3,7/2,−2) (15+15)M� 0.987 23.96 0.41 0.974 22.36 0.48 (15+5)M� 0.975 17.83 0.24 0.967 18.24 0.23
(20+10)M� 0.980 23.62 0.37 0.961 22.26 0.43 (10+5)M� 0.984 14.34 0.24 0.982 14.12 0.25
(15+10)M� 0.977 20.44 0.37 0.966 21.20 0.34 (5+5)M� 0.994 9.74 0.26 0.993 9.86 0.26
(20+20)M� 0.994 29.47 0.50 0.991 28.29 0.55 (20+5)M� 0.960 21.79 0.21 0.948 22.30 0.20
(20+15)M� 0.991 26.47 0.45 0.983 24.97 0.52 (10+10)M� 0.983 16.14 0.39 0.977 16.76 0.36

EP(3,7/2,+2) (15+15)M� 0.988 23.48 0.42 0.977 21.92 0.49 (15+5)M� 0.977 17.52 0.24 0.968 18.00 0.23
(20+10)M� 0.982 23.19 0.39 0.966 22.14 0.43 (10+5)M� 0.985 13.53 0.27 0.983 13.79 0.26
(15+10)M� 0.977 19.89 0.38 0.958 19.03 0.42 (5+5)M� 0.994 9.54 0.27 0.993 9.48 0.28
(20+20)M� 0.992 21.09 1.00 0.975 20.94 0.99 (20+5)M� 0.995 26.33 0.15 0.986 25.77 0.15
(20+15)M� 0.984 18.58 0.98 0.976 18.31 1.00 (10+10)M� 0.961 14.77 0.46 0.956 15.23 0.44

HT(3,7/2,−2) (15+15)M� 0.972 16.16 0.94 0.961 15.77 0.99 (15+5)M� 0.988 19.12 0.21 0.980 19.65 0.20
(20+10)M� 0.953 19.19 0.62 0.939 20.89 0.49 (10+5)M� 0.978 13.92 0.26 0.974 14.24 0.25
(15+10)M� 0.947 16.73 0.56 0.937 18.05 0.47 (5+5)M� 0.987 9.52 0.27 0.985 9.57 0.27
(20+20)M� 0.967 19.98 1.00 0.953 20.28 1.00 (20+5)M� 0.997 25.89 0.15 0.990 25.48 0.16
(20+15)M� 0.978 17.65 1.00 0.961 18.01 0.97 (10+10)M� 0.961 13.31 0.55 0.958 13.40 0.55

HT(3,7/2,+2) (15+15)M� 0.963 16.36 0.85 0.961 15.34 0.99 (15+5)M� 0.992 18.64 0.22 0.984 19.09 0.21
(20+10)M� 0.954 17.57 0.72 0.941 19.12 0.58 (10+5)M� 0.978 13.03 0.29 0.976 13.22 0.28
(15+10)M� 0.948 15.47 0.63 0.940 15.92 0.59 (5+5)M� 0.985 9.01 0.30 0.984 8.92 0.31
(20+20)M� 0.949 20.18 1.00 0.938 19.92 1.00 (20+5)M� 0.997 25.83 0.15 0.990 25.26 0.16
(20+15)M� 0.962 17.65 1.00 0.956 17.55 1.00 (10+10)M� 0.960 12.54 0.63 0.956 12.83 0.60

HP(3,7/2,−2) (15+15)M� 0.962 15.14 1.00 0.952 15.06 1.00 (15+5)M� 0.992 18.49 0.22 0.982 17.98 0.23
(20+10)M� 0.957 17.36 0.73 0.942 15.60 0.96 (10+5)M� 0.977 13.28 0.28 0.975 13.06 0.29
(15+10)M� 0.945 16.14 0.57 0.935 16.88 0.52 (5+5)M� 0.984 8.90 0.31 0.983 9.03 0.30
(20+20)M� 0.904 19.25 1.00 0.889 19.73 0.98 (20+5)M� 0.998 25.69 0.15 0.992 25.21 0.16
(20+15)M� 0.931 17.20 1.00 0.923 17.30 1.00 (10+10)M� 0.956 11.84 0.69 0.952 12.25 0.65

HP(3,7/2,+2) (15+15)M� 0.938 14.94 0.99 0.927 14.84 1.00 (15+5)M� 0.993 18.25 0.23 0.986 18.75 0.21
(20+10)M� 0.953 18.79 0.58 0.942 17.24 0.72 (10+5)M� 0.978 12.78 0.30 0.975 12.48 0.31
(15+10)M� 0.943 14.35 0.72 0.938 13.15 0.88 (5+5)M� 0.982 8.72 0.32 0.982 8.61 0.33

Table 4.16: Fitting factors for the projection of the target models (in the rows) onto the P(2, 5/2)
detection template family. For ten choices of BBH masses, this table shows the maxmax (mm) and
minmax (mn) matches between the target models and the P(2, 5/2) search model, maximized over the
intrinsic parameters of the search model. For each intersection, the triples (mm,M ,η) and (mn,M ,η)
denote the maximized matches and the mass parameters M = m1 +m2 and η = m1m2/M

2 at which
the maxima are attained (maxmax and minmax matches give rise to slightly different optimal values
of M and η). In computing these matches, the search parameter η was not restricted to its physical
range 0 < η ≤ 1/4, but it was allowed to move in the range 0 < η < 1, for which the energy-balance
equation (4.47) is still formally integrable. With few exceptions, this table shows that maxmax and
minmax matches are very similar, so we generally use the more conservative minmax matches.
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FF for projection onto EP(3,7/2,0), for 0 < η < 1

mn M η mnc M η fcut mm M η mnc M η fcut
(20+20)M� 0.946 26.51 0.48 0.946 26.32 0.49 303.0 (20+5)M� 0.978 13.92 0.45 0.992 13.84 0.46 387.6
(20+15)M� 0.953 21.91 0.55 0.953 21.90 0.55 354.7 (10+10)M� 0.983 12.13 0.61 0.983 12.13 0.61 624.9

T(2,5/2) (15+15)M� 0.961 18.61 0.58 0.961 18.55 0.58 413.4 (15+5)M� 0.983 10.91 0.56 0.984 11.81 0.48 620.8
(20+10)M� 0.970 15.51 0.75 0.970 15.60 0.74 464.4 (10+5)M� 0.989 9.22 0.53 0.989 9.22 0.53 853.3
(15+10)M� 0.972 15.03 0.59 0.989 13.83 0.70 384.9 (5+5)M� 0.988 6.83 0.49 0.989 6.92 0.47 639.2
(20+20)M� 0.979 53.03 0.12 0.990 41.41 0.25 125.0 (20+5)M� 0.955 25.92 0.15 0.999 25.85 0.15 202.7
(20+15)M� 0.970 45.77 0.13 0.986 34.24 0.27 133.9 (10+10)M� 0.979 22.82 0.19 0.981 19.40 0.27 217.5

T(3,7/2,−2) (15+15)M� 0.965 38.14 0.14 0.997 33.58 0.20 174.2 (15+5)M� 0.978 22.03 0.15 0.998 20.78 0.18 248.7
(20+10)M� 0.962 34.66 0.16 0.981 28.60 0.26 151.3 (10+5)M� 0.985 16.44 0.19 0.999 15.88 0.20 329.1
(15+10)M� 0.971 28.59 0.18 0.998 27.43 0.20 201.8 (5+5)M� 0.993 10.70 0.22 0.999 10.66 0.22 474.0
(20+20)M� 0.975 50.20 0.14 0.991 39.34 0.27 130.3 (20+5)M� 0.956 25.15 0.16 0.998 24.73 0.16 203.5
(20+15)M� 0.964 43.47 0.14 0.996 36.64 0.22 152.4 (10+10)M� 0.980 21.67 0.21 0.997 20.80 0.23 262.2

T(3,7/2,+2) (15+15)M� 0.961 33.63 0.19 0.998 31.35 0.23 175.8 (15+5)M� 0.973 20.04 0.19 0.999 20.16 0.18 258.0
(20+10)M� 0.963 32.90 0.18 0.998 31.04 0.21 175.7 (10+5)M� 0.985 15.27 0.21 0.999 15.12 0.22 339.6
(15+10)M� 0.971 27.32 0.20 0.998 26.01 0.22 211.3 (5+5)M� 0.995 10.06 0.25 0.999 10.02 0.25 493.4
(20+20)M� 0.931 51.44 0.13 0.997 42.91 0.22 109.1 (20+5)M� 0.938 27.91 0.13 0.998 26.56 0.14 171.5
(20+15)M� 0.932 47.52 0.11 0.991 34.56 0.26 119.4 (10+10)M� 0.961 24.07 0.17 0.997 21.50 0.22 213.0

P(2,5/2) (15+15)M� 0.948 37.45 0.15 0.997 32.77 0.21 145.2 (15+5)M� 0.961 22.22 0.15 0.994 20.01 0.19 201.9
(20+10)M� 0.941 37.07 0.14 0.997 32.21 0.19 143.8 (10+5)M� 0.977 16.12 0.19 0.998 15.80 0.20 282.2
(15+10)M� 0.949 30.16 0.16 0.998 27.08 0.21 175.2 (5+5)M� 0.992 10.36 0.23 0.999 10.34 0.24 410.4
(20+20)M� 0.964 51.21 0.13 0.995 40.49 0.25 126.9 (20+5)M� 0.951 25.45 0.15 0.999 25.10 0.16 195.2
(20+15)M� 0.949 39.73 0.18 0.999 35.96 0.23 146.3 (10+10)M� 0.977 21.76 0.21 0.999 20.23 0.24 247.0

P(3,7/2,−2) (15+15)M� 0.959 33.53 0.19 0.999 30.68 0.24 170.5 (15+5)M� 0.970 20.36 0.18 0.998 20.09 0.18 239.4
(20+10)M� 0.956 33.61 0.17 0.998 31.24 0.20 172.2 (10+5)M� 0.985 14.97 0.22 0.999 15.07 0.22 331.1
(15+10)M� 0.964 27.56 0.19 0.998 25.57 0.23 201.1 (5+5)M� 0.994 10.07 0.25 1.000 10.09 0.25 493.0
(20+20)M� 0.962 50.35 0.13 0.996 42.28 0.21 135.7 (20+5)M� 0.951 25.37 0.15 0.998 24.69 0.16 191.9
(20+15)M� 0.953 43.10 0.14 0.997 35.06 0.24 147.8 (10+10)M� 0.976 21.04 0.22 0.999 19.62 0.26 253.0

P(3,7/2,+2) (15+15)M� 0.959 32.97 0.20 0.996 31.31 0.22 185.3 (15+5)M� 0.970 20.00 0.19 1.000 19.42 0.20 242.2
(20+10)M� 0.955 32.79 0.18 0.996 31.11 0.20 177.0 (10+5)M� 0.986 14.63 0.23 0.999 14.68 0.23 322.5
(15+10)M� 0.964 26.97 0.20 0.998 24.86 0.24 204.0 (5+5)M� 0.994 9.76 0.26 0.999 9.83 0.26 498.3
(20+20)M� 0.997 35.38 0.30 0.998 35.47 0.30 244.7 (20+5)M� 0.994 22.55 0.19 0.996 22.18 0.19 337.2
(20+15)M� 0.997 30.97 0.30 0.998 30.66 0.31 281.2 (10+10)M� 0.998 17.75 0.30 0.999 17.47 0.31 490.2

ET(2,5/2) (15+15)M� 0.998 26.44 0.31 0.998 26.57 0.30 325.5 (15+5)M� 0.996 17.98 0.22 0.997 17.77 0.23 439.9
(20+10)M� 0.998 26.97 0.26 0.998 26.99 0.26 324.0 (10+5)M� 0.997 13.16 0.28 0.997 13.15 0.28 663.7
(15+10)M� 0.999 22.21 0.29 0.998 22.19 0.29 387.3 (5+5)M� 0.999 8.61 0.32 0.999 8.63 0.32 987.2
(20+20)M� 0.997 43.91 0.21 0.998 43.90 0.21 202.1 (20+5)M� 0.999 26.17 0.15 0.999 26.22 0.15 338.1
(20+15)M� 0.998 37.31 0.22 0.999 37.68 0.22 232.0 (10+10)M� 1.000 21.67 0.22 1.000 21.70 0.22 403.1

ET(3,7/2,−2) (15+15)M� 0.997 32.97 0.21 0.998 32.66 0.21 269.5 (15+5)M� 1.000 21.20 0.17 1.000 21.20 0.17 421.1
(20+10)M� 0.998 32.56 0.19 1.000 32.22 0.20 275.1 (10+5)M� 1.000 16.09 0.20 1.000 16.10 0.20 545.8
(15+10)M� 1.000 26.98 0.21 1.000 26.98 0.21 328.1 (5+5)M� 0.999 10.79 0.22 0.999 10.82 0.22 810.2
(20+20)M� 0.996 40.97 0.24 1.000 41.43 0.23 212.6 (20+5)M� 1.000 25.46 0.15 1.000 25.47 0.15 346.5
(20+15)M� 1.000 36.14 0.23 1.000 36.18 0.23 243.9 (10+10)M� 1.000 20.68 0.24 1.000 20.58 0.24 401.5

ET(3,7/2,+2) (15+15)M� 1.000 30.87 0.24 1.000 30.87 0.24 285.4 (15+5)M� 0.999 20.47 0.18 1.000 20.49 0.18 432.2
(20+10)M� 0.998 30.88 0.21 1.000 30.77 0.21 287.4 (10+5)M� 0.999 15.40 0.21 1.000 15.37 0.21 570.3
(15+10)M� 0.999 25.98 0.22 0.999 25.81 0.23 340.2 (5+5)M� 0.999 10.25 0.24 0.999 10.24 0.24 861.9
(20+20)M� 0.993 42.28 0.23 0.994 41.85 0.24 210.8 (20+5)M� 0.998 26.65 0.14 0.998 26.68 0.14 335.4
(20+15)M� 0.994 37.02 0.23 0.994 36.85 0.23 238.2 (10+10)M� 0.998 21.68 0.22 0.998 21.68 0.22 408.9

EP(2,5/2) (15+15)M� 0.993 31.81 0.23 0.994 31.85 0.23 278.3 (15+5)M� 0.998 21.37 0.17 0.999 21.42 0.17 420.1
(20+10)M� 0.995 32.05 0.20 0.995 32.07 0.20 277.4 (10+5)M� 0.998 16.15 0.19 0.998 16.06 0.20 553.4
(15+10)M� 0.995 26.91 0.21 0.995 26.73 0.21 331.7 (5+5)M� 0.998 10.74 0.22 0.998 10.74 0.22 817.3
(20+20)M� 0.999 40.75 0.24 1.000 40.80 0.24 213.6 (20+5)M� 1.000 25.26 0.16 1.000 25.26 0.16 353.0
(20+15)M� 1.000 35.81 0.24 1.000 35.92 0.23 244.5 (10+10)M� 0.999 20.52 0.24 1.000 20.49 0.24 426.7

EP(3,7/2,−2) (15+15)M� 0.999 30.78 0.24 1.000 30.53 0.24 284.6 (15+5)M� 1.000 20.30 0.18 1.000 20.28 0.18 434.7
(20+10)M� 1.000 30.66 0.21 1.000 30.60 0.21 286.9 (10+5)M� 1.000 15.29 0.21 1.000 15.31 0.21 572.7
(15+10)M� 0.999 25.50 0.23 1.000 25.55 0.23 342.8 (5+5)M� 0.999 10.18 0.24 1.000 10.21 0.24 855.0
(20+20)M� 0.999 39.67 0.25 1.000 39.68 0.25 218.4 (20+5)M� 0.999 24.99 0.16 1.000 24.93 0.16 354.4
(20+15)M� 0.999 34.65 0.25 1.000 34.82 0.25 252.8 (10+10)M� 0.998 20.00 0.25 1.000 19.89 0.25 441.9

EP(3,7/2,+2) (15+15)M� 0.998 30.00 0.25 1.000 29.94 0.25 289.9 (15+5)M� 0.999 19.92 0.19 1.000 19.93 0.19 443.1
(20+10)M� 1.000 29.93 0.22 1.000 29.86 0.22 292.2 (10+5)M� 1.000 14.94 0.22 1.000 14.96 0.22 584.7
(15+10)M� 1.000 24.88 0.24 1.000 24.87 0.24 350.4 (5+5)M� 1.000 9.98 0.25 1.000 9.98 0.25 881.1
(20+20)M� 0.981 22.27 0.98 0.981 22.23 0.98 302.5 (20+5)M� 0.960 30.45 0.11 0.997 28.68 0.12 181.2
(20+15)M� 0.969 23.03 0.64 0.969 23.03 0.64 329.2 (10+10)M� 0.976 16.76 0.36 0.977 16.73 0.37 506.7

HT(3,7/2,−2) (15+15)M� 0.969 23.41 0.43 0.969 23.48 0.43 349.1 (15+5)M� 0.987 21.80 0.16 0.999 21.51 0.16 285.1
(20+10)M� 0.972 28.37 0.26 0.973 28.52 0.25 304.0 (10+5)M� 0.992 14.88 0.23 0.992 14.98 0.22 590.6
(15+10)M� 0.972 21.54 0.33 0.972 21.48 0.33 399.9 (5+5)M� 0.992 9.86 0.26 0.992 9.91 0.25 880.6
(20+20)M� 0.967 20.89 1.00 0.967 20.89 1.00 320.3 (20+5)M� 0.955 29.94 0.11 0.997 28.07 0.13 183.7
(20+15)M� 0.965 22.17 0.65 0.966 22.51 0.63 335.6 (10+10)M� 0.973 15.74 0.40 0.973 15.74 0.40 529.0

HT(3,7/2,+2) (15+15)M� 0.967 19.51 0.61 0.967 19.53 0.61 389.6 (15+5)M� 0.987 21.17 0.17 0.999 20.86 0.17 291.5
(20+10)M� 0.972 26.09 0.30 0.974 26.27 0.29 330.8 (10+5)M� 0.990 14.03 0.25 0.991 14.01 0.25 624.1
(15+10)M� 0.962 19.12 0.41 0.964 18.61 0.44 441.1 (5+5)M� 0.989 9.22 0.29 0.989 9.24 0.29 692.8
(20+20)M� 0.962 20.92 1.00 0.962 20.93 1.00 317.8 (20+5)M� 0.950 30.09 0.11 0.997 27.91 0.13 183.1
(20+15)M� 0.963 20.02 0.81 0.964 20.33 0.78 349.3 (10+10)M� 0.970 15.02 0.44 0.970 15.06 0.44 540.1

HP(3,7/2,−2) (15+15)M� 0.962 17.46 0.77 0.962 17.42 0.77 409.8 (15+5)M� 0.986 21.12 0.17 0.999 20.63 0.18 292.9
(20+10)M� 0.974 25.65 0.31 0.974 25.66 0.31 333.8 (10+5)M� 0.989 14.01 0.25 0.989 13.92 0.26 630.5
(15+10)M� 0.959 19.82 0.38 0.960 19.84 0.38 422.1 (5+5)M� 0.987 9.25 0.29 0.988 9.28 0.29 662.6
(20+20)M� 0.921 20.07 1.00 0.923 19.92 1.00 334.8 (20+5)M� 0.948 29.80 0.11 0.996 27.20 0.14 176.6
(20+15)M� 0.944 17.68 1.00 0.944 17.68 1.00 377.5 (10+10)M� 0.964 14.01 0.50 0.965 14.03 0.50 566.8

HP(3,7/2,+2) (15+15)M� 0.944 17.13 0.78 0.944 17.12 0.78 417.1 (15+5)M� 0.986 20.62 0.18 0.986 20.82 0.17 428.6
(20+10)M� 0.967 23.63 0.37 0.967 23.84 0.36 356.4 (10+5)M� 0.989 13.60 0.27 0.989 13.57 0.27 641.9
(15+10)M� 0.954 17.68 0.48 0.954 17.68 0.48 455.8 (5+5)M� 0.984 8.82 0.31 0.985 8.98 0.30 627.5

Table 4.17: Fitting factors for the projection of the target models (in the rows) onto the EP(3, 7/2, 0)
detection template family. For ten choices of BBH masses, this table shows the minmax matches
between the target models and the EP(3, 7/2, 0) search model, with (mnc) and without (mn) the
time-domain cut discussed in Sec. 4.7. The matches are maximized over the intrinsic parameters of
the search model (over M and η for the mn values; over M , η and fcut for the mnc values). For each
intersection, the triple (mm,M ,η) and the quadruple (mn,M ,η,fcut) denote the maximized matches
and the mass (and cut) parameters at which the maxima are attained. In computing these matches,
the search parameter η was not restricted to its physical range 0 < η ≤ 1/4, but it was allowed to
move in the range 0 < η < 1 for which the energy-balance equation (4.47) is still formally integrable.
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